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Abstract

The use of mobile devices is often limited by the lifetime of the included batteries.

This lifetime naturally depends on the battery’s capacity and on the rate at which

the battery is discharged. However, it also depends on the usage pattern, i.e.,

the workload, of the battery. When a battery is continuously discharged, a high

current will cause it to provide less energy until the end of its lifetime than a lower

current. This effect is termed the rate-capacity effect. On the other hand, during

periods of low or no discharge current, the battery can recover to a certain extent.

This effect is termed the recovery effect. In order to investigate the influence of the

device workload on the battery lifetime a battery model is needed that includes

the above described effects.

Many different battery models have been developed for different application

areas. We make a comparison of the main approaches that have been taken.

Analytical models appear to be the best suited to use in combination with a device

workload model, in particular, the so-called kinetic battery model. This model is

combined with a continuous-time Markov chain, which models the workload of a

battery powered device in a stochastic manner. For this model, we have developed

algorithms to compute both the distribution and expected value of the battery

lifetime and the charge delivered by the battery. These algorithms are used to

make comparisons between different workloads, and can be used to analyse their

impact on the system lifetime.

In a system where multiple batteries can be connected, battery scheduling can

be used to “spread” the workload over the individual batteries. Two approaches

have been taken to find the optimal schedule for a given load. In the first approach

scheduling decisions are only taken when a change in the workload occurs. The

kinetic battery model is incorporated into a priced-timed automata model, and we

use the model checking tool Uppaal Cora to find schedules that lead to the longest

system lifetime.

The second approach is an analytical one, in which scheduling decisions can

be made at any point in time, that is, independently of workload changes. The

analysis of the equations of the kinetic battery model provides an upper bound

for the battery lifetime. This upper bound can be approached with any type
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Abstract

of scheduler, as long as one can switch fast enough. Both the approaches show

that battery scheduling can potentially provide a considerable improvement of the

system lifetime. The actual improvement mainly depends on the ratio between

the battery capacity and the average discharge current.
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Chapter 1

Introduction

With the proliferation of cheap wireless access technologies, such as wireless LAN,

Bluetooth as well as GSM, the number of wireless devices an average citizen is

using has been steadily increasing over the last decade. For example, between

2004 and 2008 the number of mobile phones within the Netherlands has grown

from 16 million to 19.7 million, and the percentage of households owning a laptop

grew from 27% to 62% [11]. Such devices not only add to the flexibility with

which we can live our lives and do our work, but also add to our reachability and

our security. Next to these personal wireless devices, an ever growing number

of wireless devices is used for surveillance purposes, most notably in sensor-type

networks. A common issue to be dealt with in the design of all of these devices is

power consumption. Since all of these devices use batteries of some sort, mostly

rechargeable, achieving low power consumption for wireless devices has become a

key design issue. This fact is witnessed by many recent publications on this topic,

for example the special issue of IEEE Computer (November 2005) that has been

devoted to it [34]. Also, conferences dedicated to energy efficiency are becoming

commonplace now, such as the e-Energy conference [21] or the ICGreen conference

[33].

Low-power design is a very broad area in itself, with so-called “battery-driven

system design” a special branch of it, that becomes, due to the reasons mentioned,

more and more important. A key issue to be addressed is to find the right tradeoff

between battery usage and required performance: how can we design a (wireless)

system such that with a given battery, good performance (throughput, reachability,

and so on) is obtained, for a long-enough period? Stated differently, how should

the processes in the wireless device be organized such that the battery lifetime

(which determines the system lifetime) will be as high as possible? In this thesis,

the battery lifetime is the time of one discharge period of the battery, from full to

empty.
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Influence of workload on battery lifetime

The impact of the workload on the battery lifetime is not straightforward. The

workload of many devices can not be easily defined, because of random influences,

such as human behavior. However, an overall workload pattern can often be

modeled using a stochastic workload model. For example, in [60] Simunic et al.

use semi-Markov decision processes to model a portable device. The model is

used to compute dynamic power management strategies, i.e., when to put the

device in a power-saving sleep mode. Here a trade off has to be made between

lowering the overall power consumption, which extends the battery lifetime, and

the perceived performance of the device, since waking up from the sleep mode

will cost extra time. Similar research is done by Chen et al. in [12], where the

workload is modeled by a continuous-time Markov chain to investigate the system

power and latency characteristics of dynamic power management. In this model

also the power consumption induced by the mode switching is included.

In the mentioned studies, the focus is on lowering the overall power consump-

tion to improve the battery lifetime, without influencing the overall system perfor-

mance. The battery is considered to be an ideal power source, which will always

supply its full capacity. This is not realistic. In a real battery two non-linear prop-

erties play an important role. The first is the rate-capacity effect. When a battery

is continuously discharged, a high discharge current will cause it to provide less

energy until it is emptied than a lower current. On the other hand, during periods

of low or no discharge current, the battery can recover some of its “lost” capacity.

This is termed the recovery effect. These effects result in the fact that the battery

lifetime is not only determined by the average load, but also by the way the load

is distributed over time.

In this thesis, we investigate the impact of the workload on the battery lifetime.

We combine stochastic workload models, described by continuous-time Markov

chains, with a battery model. For this combined model we supply algorithms for

the computation of both the distribution and expected value of the battery lifetime

and amount of charge delivered by the battery.

Before we can do this, we need a battery model that correctly models the

two non-linear effects described above. In the literature, many different battery

models can be found. Highly detailed electro-chemical models [19, 20] have been

developed for the use in battery design. In electrical engineering, electrical circuit

models [25, 26], which describe the electrical properties of the battery, are used.

Next to these specialized models, also various high-level analytic and stochastic

battery models are available. We have investigated what is the model that can

best be used in combination with a workload model. Here, the best model is

a model that does include the important non-linear battery properties to yield

accurate computations, but has a relatively low computational complexity, thus

keeping the composed model still manageable. The model that adheres to these

2



conditions is the kinetic battery model [42, 43, 44].

Battery scheduling

The extent to which one can change a workload is often limited by the performance

a user expects. A user does not want to wait to use his phone just because it may be

beneficial for the battery in the future. However, in systems where more than one

battery can be connected there is more freedom to influence the workload for each

of the batteries without any impact on the overall system performance as perceived

by the user. By switching between the batteries the system is always powered,

and at the same time one can change the workload of each of the batteries.

Besides in devices powered by multiple batteries, battery scheduling may also

be beneficial in sensor networks. Although each sensor, in general, is powered by

only one battery, the entire network is powered by many. Often there are several

routes from a sensor node to the data sink to send the collected data through

the network. To keep all the sensors powered as long as possible, battery-aware

routing has to be done, i.e., the decision on which sensor has to forward the data

has to be based on the status of the sensor’s batteries. Switching from one route

to the other will give the batteries time to recover and thus results in a longer

lifetime to the sensor network as a whole. In this way, the routing problem can be

regarded as a battery scheduling problem.

Some work on system lifetime improvement by battery scheduling has already

been done, for example in [7, 15]. In these studies, some simple scheduling schemes,

like round robin or best-of-two scheduling, are used. In the former scheme the used

battery is switched at regular intervals regardless of the status of the battery, in

the latter scheme the battery that is best, i.e., with the most charge left, is picked.

The results show an increase of system lifetime when battery scheduling is applied.

However, it is still unclear what is the best way to schedule the batteries, and what

is the maximum lifetime gain that one can achieve.

We take two approaches to find the best battery schedule. In the first approach

we use priced-timed automata [5] to model a system with two batteries. At fixed

moments in time the battery scheduler chooses which battery is to be used. The

Uppaal CORA model checker [65] is used to find the optimal battery schedule.

Due to the computational complexity of the model, it is not practically feasible to

compute schedules for systems with more than two batteries.

The second analytical approach does not have this limitation. In this approach,

we relax the conditions on the moments of scheduling; at any moment in time the

scheduler is allowed to switch to another battery. Under this condition one can

obtain the maximum possible system lifetime, given the equations of the kinetic

battery model.
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Outline of the thesis

Chapter 2 gives an introduction to the most important physical properties of

batteries. Furthermore, an overview of the battery models available in the litera-

ture is given. Electro-chemical models describe the chemical processes within the

battery in detail, whereas electrical circuit battery models focus on the electrical

properties of the battery. Next to these specialized models also high-level analytic

and stochastic models are available, that focus on the main battery properties

needed to predict the battery lifetime. The different modeling approaches are

compared for their suitability to be used in combination with workload models.

The simple analytical models, with their compact representation, are best for this

purpose.

In Chapter 3, two analytical battery models, the kinetic battery model and

the diffusion model, are compared in more detail. It is shown for the first time that

the two are actually closely related, the former being a first-order approximation

of the latter. Also, it is shown that fitting the parameters of the kinetic battery

model to the diffusion model results in accurate battery lifetime computations.

In Chapter 4, we combine the kinetic battery model with a stochastic work-

load, modeled by a continuous-time Markov chain. We develop new algorithms to

compute the cumulative distribution and mean value of both the battery lifetime

and the charge delivered by the battery. The approach is applied to a simple and

burst workload. This analysis shows the impact of the workload on the battery

lifetime.

In Chapter 5, the kinetic battery model is incorporated into a priced-timed

automata model. Two batteries are modeled to investigate the impact of battery

scheduling on the system lifetime. With the UPPAAL-CORA tool, the model is

used to find the best strategies to balance the load over two batteries. This has

not been done before. The system lifetime from the priced-timed automata model

is compared with some straightforward scheduling schemes.

Chapter 6 provides a new analytic approach to the battery scheduling prob-

lem. By loosening the conditions on the scheduling moments an analytic solu-

tion can be derived directly from the equations that describe the kinetic battery

model. The results show that the optimal lifetime can easily be approached by

any scheduling algorithm, as long as the switching between the batteries is fast

enough.

In Chapter 7, we summarize the content of this thesis, and give some ideas

for future work.

Origin of the Chapters

• Chapter 2 and 3 are based on [37] and [38], and the journal paper [39].
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– [37] M. R. Jongerden and B. R. Haverkort. Battery modeling. Tech-

nical Report TR-CTIT-08-01, Centre for Telematics and Information

Technology, University of Twente, 2008

– [38] M. R. Jongerden and B. R. Haverkort. Which battery model to

use? In Proceedings of the 24th UK Performance Engineering Workshop

(UKPEW), Technical Report Series of the Department of Computing,

Imperial College London, pages 76–88, 2008

– [39] M. R. Jongerden and B. R. Haverkort. Which battery model to

use? IET Software, 3(6):445–457, December 2009
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the International Conference on Operations Research 2010 in Munich [35].
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tery lifetime distributions. In Proceedings of the 37th Annual IEEE/-
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(DSN ’07), pages 780–789. IEEE Computer Society Press, 2007
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powered devices. extended abstract accepted for post-conference proceed-
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tion with Alexandru Mereacre.

– [40] M. R. Jongerden, B. R. Haverkort, H. C. Bohnenkamp, and J.-P.
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Computer Society Press, 2009
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Chapter 2

Battery modeling

Over the years, many different types of battery models have been developed for

different application areas. In this chapter we give an overview of the most im-

portant approaches that have been taken. First, we give a short introduction into

batteries in Section 2.1, in which we describe the main properties of the battery

we want to be modeled. In Sections 2.2 through 2.5 the different battery models

are described. We conclude this chapter in Section 2.6, evaluating which of the

models is suited to be used in battery performance modeling.

2.1 Battery basics

A battery consists of one or more electrochemical cells. Although strictly speaking

a battery consists of multiple cells, a battery is also used to refer to a single

cell. In these cells, chemically stored energy is converted into electrical energy

through an electrochemical reaction. Figure 2.1 shows a schematic picture of an

electrochemical cell. A cell consists of an anode, a cathode and the electrolyte,

which separates the two electrodes. During the discharge, an oxidation reaction

at the anode takes place. In this reaction a reductant (R1) donates m electrons

(e−), which are released into the (connected) circuit. At the cathode a reduction

reaction takes place. In this reaction, n electrons are accepted by an oxidant (O2):

{
R1 → O1 + me−, at the anode,

O2 + ne− → R2, at the cathode.

As an example of a chemical reaction, this is what happens in the widely-used

Lithium-ion batteries [51]:

CLix → C + xLi+ + xe−,

Li1−xCoO2 + xLi+ + xe− → LiCoO2,
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Electrolyte

Anode Cathode

e
-

e
-

Figure 2.1 Schematic picture of an electrochemical cell.

where 0 < x ≤ 1. These are the reactions for discharging the battery. For charging

the battery the arrows in the reaction equations are directed to the left.

Modeling the behavior of batteries is complex, because of non-linear effects

during discharge. In the ideal case, the voltage stays constant during discharge,

with an instantaneous drop to zero when the battery is empty. The ideal capacity

would be constant for all discharge currents, and all energy stored in the battery

would be used. However, for a real battery the voltage slowly drops during dis-

charge and the effective capacity is lower for high discharge currents, as illustrated

in Figure 2.2. This effect is termed the rate capacity effect. Besides this, there is

the so-called recovery effect : during periods of no or very low discharge, the bat-

tery can recover the capacity “lost” during periods of high discharge to a certain

extent, as illustrated in Figure 2.3. In this way the effective capacity is increased

and the battery lifetime is lengthened. For all types of batteries these effects occur.

However, the extent to which they are exhibited depends on the battery type.

The above mentioned effects are mainly caused by the slow diffusion of reac-

tants in the battery. For example, in the Lithium-ion battery, described above, the

Li+ ions made at the anode have to diffuse to the cathode when a current is drawn

from the battery. When the current is too high, the internal diffusion cannot keep

up with the rate the ions react at the cathode. As a result, the positive charge

at the cathode drops and rises at the anode. This causes a drop in the output

voltage of the battery. However, when the battery is less loaded for a while, the

ions have enough time to diffuse again and charge recovery takes place.

For constant loads, we can easily calculate the ideal battery lifetime (L) by

dividing its capacity (C), usually given in mAh or As, by the discharge current

8
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Figure 2.2 Rate capacity effect: The left figure shows the evolution of the voltage

over time for a low and high discharge current. The voltage drops faster for

high discharge currents. The right figure shows the capacity as a function of the

discharge rate. The discharge rate is given in terms of C rating, a C rating of

2C means that the battery is discharged in 1
2

hour. The measured capacities are

given relatively to the capacity at the 2 hour discharge rate, 0.5 C. The figure

shows that the effective capacity drops for high discharge rates [45].

time of discharge
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continuous
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Figure 2.3 Recovery effect: for intermittent discharges the battery can recover

during idle periods. In this plot the off-time is not shown, which leads to the

vertical jumps in the plot. In this way, one can clearly see the extension of the

battery lifetime [45].
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(I):

L = C/I. (2.1)

However, due to the rate capacity and the recovery effects this relation does not

hold for real batteries. Many models have been developed to predict real battery

lifetimes under a given load. In the following sections several of these models will

be discussed.

2.2 Electrochemical models

Electrochemical models are based on the chemical processes that take place in the

battery. The models describe these battery processes in great detail. This makes

these models the most accurate battery models. However, the highly detailed

description makes the models complex and difficult to configure.

Doyle, Fuller and Newman developed an electrochemical model for lithium

and lithium-ion cells [20, 23, 24]. This model consists of six coupled, non-linear

differential equations. Solving these equations gives the voltage and current as

functions of time, and the potentials in the electrolyte and electrode phases, ion

concentration, reaction rate and current density in the electrolyte as functions of

time and position in the cell. Similar models have been developed for NiCd [19]

and alkaline batteries [52].

Dualfoil is a Fortran program that uses the model of Doyle et al. to simulate

lithium-ion batteries. The program is freely available on the internet [22]. It

computes how all the battery properties change over time for the load profile set

by the user. From the output data, it is possible to obtain the battery lifetime.

Besides the load profile, the user has to set over 50 battery related parameters,

e.g., the thickness of the electrodes, the initial ion concentration in the electrolyte

and the overall heat capacity. To be able to set all these parameters one needs a

very detailed knowledge of the battery that is to be modeled. On the other hand,

the accuracy of the model is very high. Dualfoil is often used as a comparison

against other models, instead of using experimental results to check the accuracy.

2.3 Electrical-circuit models

In electrical-circuit models, the electrical properties of the battery are modeled

using PSpice circuits [64] consisting of voltage sources, lookup tables and linear

passive elements, such as resistors and capacitors. The first electrical-circuit mod-

els were proposed by Hageman [26]. He used simple PSpice circuits to simulate

nickel-cadmium, lead-acid and alkaline batteries. Gold [25] proposed a similar

model for lithium-ion batteries. The core of the models for the different types of

batteries is the same:
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Cell_V

RATE

R2

C1E_Rate

E_Cell R5

R_Cell

E_Battery

V_Sense

-OUTPUT

+OUTPUT

Invert

R4E_Invert

STATE_OF_CHARGE

E_Lost_Rate

R1C_CellCapacity

G_Discharge

Cell_V

Figure 2.4 Basic functional schematic covering all the modeled cell types. This

basic schematic requires minor changes to complete the models for each specific

cell [26].

• a capacitor represents the capacity of the battery,

• a discharge-rate normaliser determines the lost capacity at high discharge

currents,

• a circuit to discharge the capacity of the battery,

• a voltage versus state-of-charge lookup table,

• a resistor representing the battery’s resistance.

Figure 2.4 shows the basic circuits used to model an arbitrary cell. A PSpice

program describes the interaction between the different circuits. Minor changes

have to be made to complete the model for a specific cell type. Although the

models are simpler than the electrochemical models and therefore computationally
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less expensive, it still takes quite some effort to configure them. Especially the

lookup tables used in the model require much experimental data on the battery’s

behavior. Furthermore, the models are less accurate in predicting battery lifetime,

having errors up to approximately 12% [25].

2.4 Analytical models

Analytical models describe the battery at a higher level of abstraction than the

electrochemical and electrical circuit models. The major properties of the battery

are modeled using only a few equations. This makes this type of model much

easier to use than the electrochemical and electrical circuit models.

2.4.1 Peukert’s law

The simplest model for predicting battery lifetimes that takes into account part of

the non-linear properties of the battery is Peukert’s law [53]. It captures the non-

linear relationship between the lifetime of the battery and the rate of discharge,

but without modeling the recovery effect. According to Peukert’s law, the battery

lifetime (L) can be approximated as:

L =
a

Ib
, (2.2)

where I is the discharge current, and a and b are constants which are obtained

from experiments. Ideally, a would be equal to the battery capacity and b would

be equal to 1. However, in practice a has a value close to the battery’s capacity,

and b is a number greater than one. For most batteries the value of b lies between

1.2 and 1.7 [45].

The results obtained by applying Peukert’s law for predicting battery lifetimes

are reasonably good for constant continuous loads. But the model does not deal

well with variable or interrupted loads. In [53], Rakhmatov and Vrudhula give an

extended version of Peukert’s law for non-constant loads: in Equation (2.2), I is

replaced by the average current up to t = L. For a piecewise constant discharge

profile, with tk the points in time of current change, as shown in Figure 2.5, this

yields:

L =
a

[
P

n
k=1 Ik(tk−tk−1)

L

]b
. (2.3)

This equation is not as simple as it looks. It is impossible to easily isolate L in

the equation, since L turns up inside the n-term sum as well (tn = L). For n = 1,

Equation (2.3) reduces to (2.2). Although the extended Peukert’s law can handle

non-constant discharge profiles, it is still too simple. Only the average discharge

current is taken into account, and the recovery effect is not taken into account.
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Figure 2.5 An example of a piecewise constant discharge profile.

2.4.2 Kinetic Battery Model

A second analytical model is the Kinetic Battery Model (KiBaM) of Manwell

and McGowan [42, 43, 44]. The KiBaM is a very intuitive battery model. It

is called kinetic because it uses a chemical kinetics process as its basis. In the

model, the battery charge is distributed over two wells: the available-charge well

and the bound-charge well (cf. Figure 2.6). A fraction c of the total capacity

is put in the available-charge well (denoted y1(t)), and a fraction 1 − c in the

bound-charge well (denoted y2(t)). The available-charge well supplies electrons

directly to the load (i (t)), whereas the bound-charge well supplies electrons only

to the available-charge well. The charge flows from the bound-charge well to the

available-charge well through a “valve” with fixed conductance, k. The parameter

k has the dimension 1/time and limits the rate at which the charge can flow

between the two charge wells. Next to this parameter, the rate at which charge

flows between the wells depends on the height difference between the two wells.

The heights of the two wells are given by: h1(t) = y1(t)/c and h2(t) = y2(t)/1 −
c. The change of the charge in both wells is given by the following system of

differential equations:







dy1
dt

= −i (t) + k(h2 − h1),

dy2
dt

= −k(h2 − h1),
(2.4)
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bound charge available charge

k

1 − c

y2 y1

c

i(t)

h1

h2

Figure 2.6 Two-well-model of the Kinetic Battery Model.

with initial conditions y1(0) = c · C and y2(0) = (1 − c) · C, where C is the total

battery capacity. The battery is considered empty when it is observed that there

is no charge left in the available-charge well.

When a load is applied to the battery, the available charge reduces, and the

height difference between the two wells grows. When the load is removed, charge

flows from the bound-charge well to the available-charge well until h1 and h2 are

equal. So, during an idle period, more charge becomes available and the battery

lasts longer than when the load is applied continuously. In this way the recovery

effect is taken into account. Also, the rate capacity effect is covered, since for a

higher discharge current the available-charge well will be drained faster, hence,

less time will be available for the bound charge to flow to the available charge.

Therefore, more charge will remain unused, and the effective capacity is lower.

The differential equations (2.4) can be solved for the case of a constant dis-

charge current (i (t) = I) using Laplace transforms, which yields:






y1(t) = −cIt + cC − I (1 − c)
k′

(

1 − e−k′t
)

,

y2(t) = −(1 − c)It + (1 − c)C +
I (1 − c)

k′

(

1 − e−k′t
)

,
(2.5)

where k′ is defined as k′ = k/(c (1 − c)) . From these equations one can obtain

the battery lifetime (L). From y1(t) = 0 follows:

L =
C

I
+

1

k′

(

1 − 1

c
+ W

(
1 − c

c
e−

Ck′

I
+ 1−c

c

))

, (2.6)

where W is the Lambert W function. The Lambert W function is the inverse

function of f(x) = xex [69].
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Equation (2.5) describes the evolution of the available and bound charge for the

special case of a constant load starting with a full battery. The equations can be

generalized to be able to compute the evolution of the available and bound charge

in the case of a piecewise constant discharge profile. For a piecewise constant load,

the differential equations (2.4) can be solved iteratively for each constant piece,

by using the values of the available and bound charge at the end of one piece as

initial condition for the next. For the general initial conditions y1(0) = ȳ1 and

y2(0) = ȳ2 the evolution of the available and bound charge is given by:







y1(ȳ1, ȳ2, I, t) = −cIt + c(ȳ1 + ȳ2) + ((1−c)ȳ1 − c · ȳ2)e
−k′t

− (1−c)I
k′

(1 − e−k′t),

y2(ȳ1, ȳ2, I, t) = −(1−c)It + (1−c)(ȳ1 + ȳ2) + (cȳ2 − (1−c)ȳ1)e
−k′t

+ (1−c)I
k′

(1 − e−k′t).

(2.7)

It is straightforward to verify that Equation (2.7) reduces to (2.5) in the case that

y1(0) = cC and y2(0) = (1 − c)C.

Next to the charge in the battery, the KiBaM models the voltage during dis-

charge. The battery is modeled as a voltage source in series with an internal

resistance. The level of the voltage varies with the depth of discharge. The volt-

age is given by:

V = E − IR0, (2.8)

where I is the discharge current and R0 is the internal resistance. E is the internal

voltage, which is given by:

E = E0 + AX +
BX

D − X
, (2.9)

where E0 is the internal battery voltage of the fully charged battery, A is a param-

eter reflecting the initial linear variation of the internal battery voltage with the

state of charge, B and D are parameters reflecting the decrease of the battery volt-

age when the battery is progressively discharged, and X is the normalized charge

removed from the battery. These parameters can be obtained from discharge data.

At least 3 sets of constant discharge data are needed for the non-linear least square

curve fitting, which is described in detail in [43].

The KiBaM was developed to model large lead-acid storage batteries, with a

capacity of approximately 200 Ah. These batteries have a flat discharge profile,

which is well captured by (2.8) and (2.9). These equations do not hold for the

modern batteries used in mobile devices, like Li-ion batteries, which have a sloped

discharge profile. However, if one is only interested in the battery lifetime, and not

so much in its actual voltage during discharge, one can still use the two-well model

of the KiBaM, because the it describes both the rate capacity and the recovery

effect. In Chapter 3, we compare battery lifetimes according to the KiBaM with

the Dualfoil program. The results show a close correspondence between the two
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electrode electrolyte electro-active species

(a) Charged state (b) Before recovery

(c) After recovery (d) Discharged state

w

Figure 2.7 Physical picture of the model by Rakhmatov and Vrudhula [53, 54, 55].

models for the modeled Li-ion battery. For other battery types, one still may need

to adapt the term of the flow charge between the two wells in (2.4), which for

example is done in [57] for Nickel-metal hydride (Ni-MH) batteries. This model is

described in detail in Section 2.5.2.

2.4.3 Rakhmatov and Vrudhula’s diffusion model

A third analytical model was developed in 2001 by Rakhmatov and Vrudhula

[53, 54, 55]. This model is based on the diffusion of the ions in the electrolyte.

The model describes the evolution of the concentration of the electro-active species

in the electrolyte to predict the battery lifetime under a given load. In the model

the processes at both electrodes are assumed to be identical, thus the battery is

assumed symmetric with respect to the electrodes and only one of the electrodes

is considered.

Figure 2.7 shows a simplified view of the battery operation according to the

diffusion model. At first, for the full battery, the concentration of the electro-

active species is constant over the full width (w) of the electrolyte (Figure 2.7(a)).

When a load is applied to the battery, the electrochemical reaction results in a

reduction of the concentration of the species near the electrode. Thus, a gradient

is created across the electrolyte (Figure 2.7(b)). This gradient causes the species
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to diffuse towards the electrode. Now, when the load is switched off, the con-

centration of the species at the electrode will increase again (recover) due to the

diffusion, and eventually the species will be evenly distributed over the electrolyte

again. The concentration, however, will be lower than for the full battery (Figure

2.7(c)). Finally, when the concentration at the electrode drops below a certain

value (Ccutoff), the chemical reaction can no longer be maintained and the battery

is considered to be empty (Figure 2.7(d)).

The concentration of the electro-active species at time t and distance x ∈ [0, w]

is denoted by C (x, t). For the full battery the concentration is constant over the

width w of the electrolyte: C (x, 0) = C∗, x ∈ [0, w]. The battery is considered

empty when C (0, t) drops below the cutoff level Ccutoff. The evolution of the

concentration is described by Fick’s laws [53]:







−J(x, t) = D
∂C (x, t)

∂x
,

∂C (x, t)
∂t

= D
∂2C (x, t)

∂x2 ,

(2.10)

where J (x, t) is the flux of the electro-active species at time t and distance x

from the electrode, and D is the diffusion constant. The flux at the electrode

surface (x = 0) is proportional to the current (i (t)). The flux on the other side

of the diffusion region (x = w) equals zero. This leads to the following boundary

conditions:







D
∂C (x, t)

∂x

∣
∣
∣
∣
x=0

=
i (t)
νFS ,

D
∂C (x, t)

∂x

∣
∣
∣
∣
x=w

= 0,

(2.11)

where S is the area of the electrode surface, F is Faraday’s constant, and ν is

the number of electrons involved in the electrochemical reaction at the electrode

surface.

It is possible to obtain an analytical solution for the set of partial differential

equations (2.10) together with the initial condition and the boundary conditions

(2.11) using Laplace transforms. From that solution one can obtain an expression

for the apparent charge lost from the battery (σ(t)) [56]:

σ (t) =

∫ t

0

i (τ) dτ

︸ ︷︷ ︸

l(t)

+

∫ t

0

i (τ)

(

2
∞∑

m=1

e−β2m2(t−τ)

)

dτ

︸ ︷︷ ︸

u(t)

, (2.12)

where β = π
√

D/w. The apparent charge lost can be separated in two parts:

the charge lost to the load (l(t)) and the unavailable charge (u(t)). The first is

the charge used by the device. The second is charge which remains unused in the
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battery, depicted in Figure 2.7(d). The battery is empty when the apparent charge

lost is equal to the battery’s capacity.

For a constant current I, (2.12) can easily be solved. For l (t) one obtains:

l (t) = It. For the unavailable charge one can interchange the integral and the

summation, which leads to:

u (t) = 2I

∞∑

m=1

1 − e−β2m2t

β2m2
. (2.13)

During idle periods, the unavailable charge will decrease and will be available again

for the load. One can compute the function that describes the evolution of the

unavailable charge during an idle period after a load I that lasted for a period of

length tl:

u (ti) = 2I

∞∑

m=1

e−β2m2ti

(

1 − e−β2m2tl

)

β2m2
, (2.14)

where ti is the idle time.

In [53, 54, 55] the authors compare their diffusion model with the Dualfoil

battery simulation program. The results of the Dualfoil simulations are used as

reference values, since these simulations are very precise. For constant continuous

loads, the model predicts lifetimes with an average error of 3%, and a maximum

error of 6% compared to those obtained using the Dualfoil program. For inter-

rupted and variable loads in the experiments, the diffusion model does even better,

with a 2.7% maximum error and an average error of less than 1%.

2.5 Stochastic models

Stochastic models aim to describe the battery in an abstract manner, like the

analytical models. However, the discharging and the recovery effect are described

as stochastic processes.

2.5.1 Chiasserini and Rao

The first stochastic battery models were developed by Chiasserini and Rao. Be-

tween 1999 and 2001, Chiasserini and Rao published a series of papers on battery

modeling based on discrete-time Markov chains [13, 14, 15, 16]. In [14], two mod-

els of a battery of a mobile communication device for transmitting packets are

described. In the first and simplest model, the battery is described by a discrete

time Markov chain with N +1 states, numbered from 0 to N (cf. Figure 2.8). The

state number corresponds to the number of charge units available in the battery.

One charge unit corresponds to the amount of energy required to transmit a single

packet. N is the number of charge units directly available based on continuous
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…
a

1
a1 a1a1 a1

a0 a0

1

0 1 N-1 N

Ns

a0

Figure 2.8 The basic Markov chain battery model by Chiasserini and Rao [14].

use. In this simple model, every time step either a charge unit is consumed with

probability a1 = q or recovery of one unit of charge takes place with probability

a0 = 1− q. The battery is considered empty when the absorbing state 0 is reached

or when a maximum of T charge units have been consumed. The number of T

charge units is equal to the theoretical capacity of the battery (T > N).

For this simple model it is possible to give analytical expressions for the prop-

erties of interest. The main properties investigated are the expected number of

transmitted packets (m̄p) and the gain (G) obtained from a pulsed discharge rela-

tive to a constant discharge, defined as: G = m̄p/N . Clearly, pulsed discharge will

lead to a gain that exceeds 1, due to the possibility to recover some charge units.

However, this model is too simple. The rate of recovery is not constant during

discharge, and in most systems the discharge current changes over time.

In the models in [13, 15, 16], several extensions are made to solve these prob-

lems. To improve the model, the recovery probability is made state-dependent.

When less charge units are available, the probability to recover a charge unit will

become smaller. Next to the state dependence of the recovery, there is a phase

dependence. The phase number (f) is a function of the number of charge units

that has been consumed. When more charge units have been consumed, the phase

number increases and this causes the probability of recovery to decrease. Also, it

is possible to consume more than one charge unit in any one time step, with a

maximum of M charge units (M ≤ N). In this way a more bursty consumption

of energy can be modeled. Another aspect that has been added to the model,

is the non-zero probability of staying in the same state. This means no energy

consumption or recovery takes place during a time step.

In Figure 2.9, the state transition diagram of the model with all the extensions

is shown. With probability qi, i charge units are requested in one time slot.

During the idle periods in state j, the battery either recovers one charge unit with

probability pj (f), or stays in the same state with probability rj (f). The recovery

probability in state j and phase f is defined as [15]:

pj (f) = q0e
(N−j)gN−gC(f), (2.15)

where gN and gC (f) depend on the recovery behavior of the battery. One can
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Figure 2.9 The extended Markov chain battery model by Chiasserini and Rao

[15].

model different loads by setting the transition probabilities appropriately.

In [15], the final version of the model is used to model a lithium-ion battery.

To model the battery, N is set to ∼ 2 × 106, and 2 phases are used. This results

in a Markov chain with approximately 4 × 106 states. The model is analyzed by

simulation, and the results are compared with Dualfoil (cf. Section 2.2) [15].

With both models, the gain obtained from pulsed discharge compared to constant

discharge is calculated for different discharge currents. The results of the stochastic

model have a maximum deviation of 4% from the electro-chemical model, with an

average deviation of 1%. These results show that the stochastic model gives a

good qualitative description of battery behavior under pulsed discharge. However,

it is unclear how well the model performs quantitatively, since only results of the

gain and no numbers for the computed lifetimes are given.

2.5.2 Stochastic modified KiBaM

Rao et al. [57] proposed a stochastic battery model in 2005, based on the analyt-

ical Kinetic Battery Model (KiBaM) proposed by Manwell and McGowan. The

stochastic KiBaM is used to model a Ni-MH battery, instead of a lead-acid bat-

tery for which KiBaM originally was developed. To be able to model this different

type of battery, a couple of modifications have been made to the model. First, in

the term corresponding to the flow of charge from the bound-charge well to the

available-charge well an extra factor h2 is added, changing (2.4) into:







dy1
dt

= −i(t) + ksh2(h2 − h1),
dy2
dt

= −ksh2(h2 − h1).
(2.16)

This causes the recovery to be slower when less charge is left in the battery. The

second modification is that in the stochastic model the possibility of no recovery

during idle periods is added.

The battery behavior is represented by a discrete-time Markov process. The

states of the Markov chain are of the form (i, j, t). The parameters i and j are the
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Figure 2.10 Part of the state transition diagram of the stochastic KiBaM [57].

discretized levels of the available-charge well and bound-charge well respectively,

and t is the discretized length of the current idle slot; this is the number of time

steps taken since the last time some current was drawn from the battery.

Figure 2.10 shows a part of the state transition diagram. The transitions are

summarized as follows:

(i, j, t) −→







(i + Q, j − Q, t + 1),

(i, j, t + 1),

(i − I + JI , j − JI , 0),

(2.17)

where 0 ≤ i ≤ M , 0 ≤ j ≤ N and t ≥ 0. M and N correspond to the discretized

levels of the full available and bound-charge well, respectively. The first two tran-

sitions in Equation (2.17) correspond to the time steps in which the current is

zero. With probability pr, the battery recovers Q charge units, and with proba-

bility pnr no recovery occurs. Both pr and pnr depend on the length of the idle

timeslot (t). The third transition corresponds to the time steps in which a current

is drawn from the battery. With probability qI , I charge units are drawn from the

available-charge well, and at the same time JI charge units are transferred from

the bound to the available-charge well.

The probabilities qI are defined by the load profile. Since the qI are equal for

all states, it is impossible to control in what sequence the currents are drawn from

the battery in this model, and thus to fully model a real usage pattern.

In the model of the Ni-MH battery the charge in the available and bound-

charge well is discretized in 27 · 107 and 45 · 107 charge units respectively. This

results in a Markov chain too big to handle as a whole, and no analytical solution

to the model can be given. To obtain battery lifetimes several runs of discharging

the battery are simulated with the model.

In [57], Rao et al. compare the calculated battery lifetimes with some experi-

mental results. In a simple experimental setup, different periodic loads are applied

to an AAA Ni-MH battery, and its lifetime is measured. In the first set of experi-

ments the frequency of the applied load is varied, keeping the ratio of on and off

time constant at one. In these experiments, the battery lifetime increases as the
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frequency decreases. In a second set of experiments, the ratio between on and off

time is varied by keeping the on-time fixed to 2 seconds and increasing the off-time

from 0 to 3.5 seconds. As expected, the lifetime and the delivered charge increase

when the off-time increases, since the battery has more time to recover.

The results of the simulations show that the model is quite accurate for pre-

dicting battery lifetime and charge drawn from the battery. since a maximum

error of 2.65% for the simulations, with regard to the experimental values, was

found.

2.6 Evaluation

We want to use a battery model to combine it with a workload model. With

this combination it will be possible to model the energy consumption of battery

powered devices, and predict battery lifetimes for different usage patterns. For

this purpose, we need a “simple” battery model that still gives a good description

of the most important non-linear effects, i.e., the rate capacity effect and recovery

effect.

Table 2.1 gives an overview of the different battery models and their relevant

properties. Most battery models are not well suited to be combined with a work-

load model. Although the electro-chemical model is the most accurate model and

the Dualfoil program is often used as “reality” to check the performance of other

battery models, the model is too complex for our needs. A very detailed knowl-

edge of the battery is necessary to be able to set all the parameters of the model.

Furthermore, the computational complexity of solving the six coupled partial dif-

ferential equations is very high, which makes the execution of the program slow.

Like the electro-chemical model, the electrical circuit models are too complex.

The modeling of the battery’s electrical properties is too detailed for what we

want from the battery model. Peukert’s formula, on the other hand, is too simple.

It could be easily integrated with a workload model. However, it does not take the

recovery effect into account. Therefore, it will underestimate battery lifetimes for

usage patterns with idle periods. The stochastic model by Chiasserini is also too

limited. The model is designed for pulsed discharge of the battery, and it focuses

on the recovery effect only.

The KiBaM and the diffusion model by Rakhmatov et al. do take into account

both the rate capacity effect and the recovery effect. Both models use a system of

two differential equations to describe the battery and with both models one can

compute the battery lifetime for an arbitrary piecewise constant load profile. The

compact description of the relevant battery processes combined with the availabil-

ity of an analytical solution makes these models well suited for our purpose. In the

next chapter a more detailed comparison between these two analytical models is

made. We will see that, although the two models may seem different, the KiBaM
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battery rate capacity recovery number

type effect effect parameters accuracy

Dualfoil [20, 24, 23] Li-ion + + > 50 very high

Electrical circuit [26]
Ni-Cd, alkaline

+ + 15-30 medium
Lead-acid

Peukert’s law [53] all + - 2 medium, 10% error

Diffusion model [53] Li-ion + + 2 high, 5% error

KiBaM [42] Lead-acid + + 2 high

Chiasserini [14, 13, 16, 15] Li-ion - + 2 high, 1% error

Stochastic KiBaM [57] Ni-MH + + 2 high, 2% error

Table 2.1 Battery models overview. The errors of Peukert’s law, the diffusion model and the stochastic model of Chiasserini are

relative to the results of the Dualfoil program.
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Battery modeling

is actually a first order approximation of the diffusion model.
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Chapter 3

Comparing the KiBaM and

the diffusion model

In this chapter we take a closer look at the two analytical models which are suit-

able to use for battery performance modeling, the Kinetic Battery Model and the

diffusion model. When one compares the KiBaM and the diffusion model, one sees

some similarities. In both models, the charge in the battery has to flow “to one

side” to be available for use, and part of it will stay behind in the battery when the

battery is empty. The analysis in Sections 3.1 and 3.2 shows that the KiBaM is

actually a first order approximation of the diffusion model. A further comparison

between the two models is made in Section 3.3. In Section 3.4 we address the

limitations of the analytical battery models. Section 3.5 concludes this chapter.

3.1 KiBaM coordinate transformation

To enable the comparison between the KiBaM and the diffusion model we first

apply a coordinate transformation to the differential equations of the KiBaM. We

recall the differential equations which describe the dynamics of the charge in the

two wells:






dy1
dt

= −i (t) + k(h2 − h1),

dy2
dt

= −k(h2 − h1),
(3.1)

Although these differential equations nicely describe the discharge process of the

battery, and an analytical solution can be obtained for constant discharge currents,

the equations can be simplified when a coordinate transformation is applied. In

this way even more insight can be obtained in the way the model behaves. It also

allows to easily obtain an expression for the apparent charge lost, like in Equation

(2.12).
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Comparing the KiBaM and the diffusion model

From the differential equations of the KiBaM, cf (2.4), one can see that the

height difference between the two wells (h2 − h1) plays a major role in the model.

This is one of the coordinates after the transformation, the other is the total charge

in the battery. So, the transformation changes the coordinates from y1 and y2 to

δ = h2−h1 and γ = y1+y2. This transformation changes the differential equations

to:






dγ
dt

= −i (t) ,

dδ
dt

=
i (t)
c − k′δ,

(3.2)

where k′ = k/(c(1 − c)). The initial conditions after the transformation are

δ (0) = 0 and γ (0) = C. In the new coordinate system the condition for the

battery to be emty is:

γ(t) = (1 − c)δ(t). (3.3)

The differential equations (3.2) are independent of each other and are straightfor-

wardly solved for constant discharge currents, i (t) = I:







γ (t) = C − It,

δ (t) = I
c · 1 − e−k′t

k′ .
(3.4)

During idle periods, the height difference will decrease due to the flow of charge

from the bound-charge well to the available-charge well. One can compute the

function that describes the evolution of the height difference during an idle period

after a load I that lasted for a period of length tl:

δ(ti) =
I

c
· e−k′ti(1 − e−k′tl)

k′
, (3.5)

where ti is the length of the idle period considered.

It is possible to use the solution of the transformed KiBaM to divide the charge

lost from the battery into a part lost to the load (l(t)) and a part that is unavailable

(u(t)), as is done in the diffusion model, cf. Section 2.4.3. The unavailable charge

in the KiBaM is the height difference times 1 − c. For constant current discharge

this yields:

l(t) = C − γ(t) = It, (3.6)

u(t) = (1 − c) · δ(t) =
(1 − c) I

c

1 − e−k′t

k′
. (3.7)

The evolution of the unavailable charge during an idle period after a load I that

lasted for tl is now given by:

u(ti) =
(1 − c)

c
· e−k′ti(1 − e−k′tl)

k′
. (3.8)

26



3.2 Discretized diffusion model

When one compares (3.7) and (3.8) with the first-order expansion of (2.13) and

(2.14), one sees that the two have the same form. This provides a first indication

the two models are related.

3.2 Discretized diffusion model

To show that the two models indeed are closely related, we discretize the diffusion

model in n steps and show that this results in an n-well KiBaM. To do this, one

first needs to normalize the width w (cf. Figure 2.7) of the battery, x′ = x/w.

Now, x′ is a dimensionless space coordinate, and takes a value between 0 and 1.

This changes the differential equations (2.10) into:






−J(x′, t) = D
w

∂C (x′, t)
∂x′ ,

∂C (x′, t)
∂t

= D
w2

∂2C (x′, t)
∂x′2 ,

(3.9)

and the boundary conditions into:






D
w

∂C (x′, t)
∂x′

∣
∣
∣
∣
x′=0

=
i (t)
νFS ,

D
w

∂C (x′, t)
∂x′

∣
∣
∣
∣
x′=1

= 0.

(3.10)

The next step is to transform the ion concentration (C(x′, t) in mol/m2) into charge

(h(x′, t) in As). Every ion yields ν electrons in the chemical reactions. The electric

charge per mole of electrons is given by Faraday’s constant F ≈ 9.45 · 104As/mol.

This then yields, h(x′, t) = C(x′, t)νFS. Substituting this in Equations (3.9) and

(3.10) respectively yields






−J(x′, t)νFS = D
w

∂h (x′, t)
∂x′ ,

∂h (x′, t)
∂t

= D
w2

∂2y (x′, t)
∂x′2 ,

(3.11)

for the differential equations, and






D
w

∂h (x′, t)
∂x′

∣
∣
∣
∣
x′=0

= i (t) ,

D
w

∂h (x′, t)
∂x′

∣
∣
∣
∣
x′=1

= 0,

(3.12)

for the boundary conditions. Finally, the spatial coordinate x′ is discretized. Fig-

ure 3.1 gives a schematic overview of the discretized model. The electrolyte is

divided in n parts of size α = 1/n. The level of the charge in part i is denoted by

hi. We apply the finite difference method for second-order derivatives, as follows,

∂2h

∂x2
=

h (x + α) − 2h (x) + h (x − α)

α2
, (3.13)
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x’=0 x’=1

h1

h2

h3

hnhn-1
hn-2

a

... ...

hi

Figure 3.1 Discretization of the diffusion model.

where α is the step-size of the discretization. For h(0, t) we write h1(t), and for

h(1, t) we write hn(t). This turns the differential equations together with the

boundary conditions into a system of n coupled differential equations:






∂h1(t)
∂t

= 1
α

(
D

αw2 (h2 − h1) − i(t)
)

,

∂h2(t)
∂t

= 1
α

(
D

αw2 ((h3 − h2) − (h2 − h1))
)

,

...
∂hn−1(t)

∂t
= 1

α

(
D

αw2 ((hn − hn−1) − (hn−1 − hn−2))
)

,

∂hn(t)
∂t

= 1
α

(

− D
αw2 (hn − hn−1)

)

.

(3.14)

These equations are exactly the equations one would get when the KiBaM is

extended to n equally sized wells. The variable hi(t) gives the height of well

number i at time t. When n = 2 the model is reduced to the KiBaM with two

wells, each containing half of the total charge, that is, c = 0.5, and k = 2D/w2.

3.3 Comparing the analytical models

In Section 3.2, we have shown that the diffusion model is a continuous version

of the KiBaM. In this section we make a further comparison of the two models.

In Section 3.3.1 and Section 3.3.2 a further theoretical comparison is made. In

Section 3.3.3 a practical comparison is made by using both models to compute

battery lifetimes for various loads.
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3.3 Comparing the analytical models

3.3.1 Continuous discharge

When we compare (3.7) and (3.8) with (2.13) and (2.14), we see that by setting

c = 1
3 and k′ = β2 in the KiBaM we exactly obtain the first term of the infinite sum

of the diffusion model. This is of course, a bad approximation of the infinite sum.

Note that, for t going to infinity the unavailable charge for continuous discharge

in the diffusion model will reduce to:

lim
t→∞

udiff(t) =
2I

β2

π2

6
≈ 2I

β2
· 1.64, (3.15)

while for the KiBaM the limit is:

lim
t→∞

uKiBaM(t) =
1 − c

c

I

k′
. (3.16)

So, if the KiBaM is used to approximate the diffusion model with c = 1
3 and

k′ = β2 an error of approximately 64% is made.

One can obtain a much better approximation, when the parameters c and

k′ are used to fit the KiBaM equation of u(t) to the equation of the diffusion

model. Figure 3.2(a) shows the result of a least squares fitting procedure for the

case that I = 1 A. When β = 0.273 min− 1
2 , the fit results in c = 0.166 and

k′ = 0.122 min−1. In Figure 3.2(b) the relative difference between the two curves

is shown. This difference is independent of the discharge current. The relative

difference is very large, up to 100%, for times smaller than 10 minutes. When

the battery lifetime is within this region, i.e., when the battery is discharged with

a very high current, the results for battery lifetime computations will give a big

difference.

3.3.2 Frequency response

Following the method described in [56], we now perform an analysis of the fre-

quency response of both the KiBaM and the diffusion model. In this method,

the battery model is represented by the linear time-invariant (LTI) system shown

in Figure 3.3. For both battery models, hl(t) is the unit step function. For the

diffusion model hu(t) is given by

hdiff
u (t) = 2

∞∑

m=1

e−β2m2t, (3.17)

and for the KiBaM it is

hKiBaM
u (t) =

1 − c

c
e−k′t. (3.18)

The component hl(t) expresses the actual charge lost and does not depend on

the battery parameters. For both models only hu(t) depends on the battery pa-

rameters. Therefore, to characterize the frequency response of the battery it is
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Figure 3.2 Fit of the KiBaM to the diffusion model. The evolution of the unavail-

able charge in both the diffusion model and the fitted KiBaM is given in (a). In

(b) the relative difference between the two curves, (udiff(t)− uKiBaM(t))/udiff(t),

is given.
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h (t)l

h (t)u

l(t)=i(t) h (t)Ä l

u(t)=i(t) h (t)Ä u

s(t)
i(t)

Figure 3.3 Linear time-invariant system of the battery model [56].

sufficient to find the Fourier transform of hu(t). The Fourier transform Hu(f) is

given by:

Hu(f) =

∫ ∞

−∞

hu(t)e−2πjftdt, (3.19)

where j =
√
−1. When we apply the Fourier transform to hdiff

u (t) and hKiBaM
u (t)

we obtain:

Hdiff
u (f) = 2

∞∑

m=1

1

β2m2 + 2πjf
(3.20)

for the diffusion model, and

HKiBaM
u (f) =

1 − c

c

1

k′ + 2πjf
(3.21)

for the KiBaM. The direct current response, f = 0, for the diffusion model can be

reduced to Hdiff
u (0) = π2/3β2.

Figure 3.4 shows the frequency response for both the diffusion model and

the KiBaM. The same parameters as in the previous section have been used,

β = 0.273 min− 1
2 , c = 0.166 and k′ = 0.122 min−1. The figure shows that the

diffusion model has a higher frequency response for high frequencies. This is due

to the higher-order terms that are included in the diffusion model and not in the

KiBaM. However, both models are highly insensitive to high frequency current

switching, in the ideal case the frequency response is zero for all frequencies. The

insensitivity implies that currents varying faster than 0.01 Hz can be replaced with

an average current without giving significant errors in the battery lifetime compu-

tations. Therefore in both models, it is not useful to schedule tasks at small time

scales, smaller than minutes, in order to benefit from the recovery effect, since the

average current will stay the same. Ordering tasks at processor level will not have

any effect on the battery lifetime. However, scheduling on a larger time scale,

minutes or longer, can be beneficial.

The frequency response is mainly determined by the size of the recovery pa-

rameter (k′ or β). When this parameter is increased, the recovery will be faster

and the battery behavior will be closer to that of an ideal battery. So, an in-

crease of this parameter results in a higher frequency response, hence, to a higher

sensitivity to fine-grained scheduling.
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Figure 3.4 Frequency response for KiBaM and diffusion model.

3.3.3 Computing lifetimes

Next to the theoretical analysis of the two models, both models were used to

compute battery lifetimes for various load profiles.

In [55], Rakhmatov et al. give the battery lifetimes for load profiles of a Compaq

Itsy pocket computer, computed both with their diffusion model and the electro-

chemical model Dualfoil [22] (cf. Section 2.2). To these results, the lifetimes

according to the KiBaM model have been added in Table 3.1 for constant loads

and Table 3.2 for variable-load profiles. Details of the variable-load profiles are

given in Table 3.3 (in Appendix 3.A).

The lifetimes computed using the KiBaM and diffusion model match very well.

The results for continuous discharge only deviate at high discharge currents, as

expected from the analysis of the equations, but the difference still is less than

7%. Also, for the variable loads the difference is largest for short battery lifetimes,

with a maximum of 5.4% for Case C21.

Figure 3.5 shows a plot of the lifetimes computed with both models versus the

lifetimes computed with the electro-chemical simulation program Dualfoil. In

comparison with Dualfoil both models overestimate the battery lifetime for the

low continuous loads (long lifetimes), with errors growing upto 10%. The results

of the variable loads are even better, with a maximum error of 5%.

Besides the results of the two models, also the lifetimes according to Peukert’s
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3.3 Comparing the analytical models

Test Name Iave Dualfoil Diffusion t KiBaM Peukert Ideal

(mA) (min) (min) (min) (min) (min)

T1 MPEG 222.7 140.9 139.9 139.9 154.5 181.3

T2 Dictation 204.5 156.0 156.0 156.0 168.4 197.4

T3 Talk1 108.3 317.2 331.4 331.4 321.3 372.8

T4 Talk2 107.5 319.5 334.1 334.1 323.7 375.6

T5 Talk3 94.9 365.1 384.0 384.0 367.5 425.4

T6 WAV1 84.3 413.7 437.5 437.5 414.4 478.9

T7 WAV2 75.5 464.8 493.3 493.3 463.6 534.8

T8 Idel1 28.0 1278 1400 1401 1270 1442

T9 Idle2 19.5 1852 2029 2029 1835 2071

T10 SleepDC 3.0 12285 13417 13417 12288 13458

T11 IAT 628.0 26 26.6 24.9 53.9 64.3

T12 IAR 494.7 41.3 41.4 40.5 68.6 81.6

T13 IST 425.6 54.6 53.9 53.5 80.0 94.9

T14 ISR 292.3 99.5 96.7 96.7 117.2 138.1

T15 IAD 265.6 113.1 110.6 110.6 129.1 152.0

T16 MSD 252.3 120.8 118.6 118.6 136.1 160.0

T17 DSD 234.1 132.7 131.0 131.0 146.8 172.5

T18 TSD 137.9 243.6 251.3 251.3 251.4 292.8

T19 WSD 113.9 300.1 313.0 313.0 305.3 354.5

T20 ISD 57.6 616.3 659.5 659.5 610.3 701.0

T21 SSD 32.5 1101 1201 1201 1092 1242

T22 Boot 300.0 96.0 93.2 93.1 114.1 134.6

Table 3.1 Battery lifetimes for continuous current discharge computed with

Dualfoil, the diffusion model, KiBaM, and the formula’s of Peukert’s law and

the ideal battery. The numbers for Dualfoil, the diffusion model and Peukert’s

law have been taken from [55].
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Case Dualfoil Diffusion KiBaM Peukert Ideal

(min) (min) (min) (min) (min)

C1 36.4 36.2 36.3 60.5 70.8

C2 57.2 55.8 55.7 79.1 91.9

C3 74.2 71.9 71.4 93.8 108.5

C4 128.1 124.9 123.6 142.5 163.0

C5 178.5 176.7 175.7 190.2 216.5

C6 41.5 41.0 41.1 64.4 74.7

C7 30.6 30.8 30.5 56.5 66.9

C8 37.0 37.4 38.1 60.5 70.8

C9 35.4 35.2 34.8 60.5 70.8

C10 135.2 132.6 131.7 148.8 171.3

C11 108.8 107.4 107.9 148.8 171.3

C12 159.0 155.4 154.1 174.1 169.3

C13 133.8 131.7 131.3 148.8 171.3

C14 132.9 129.7 129.4 148.8 171.3

C15 207.6 209.2 209.2 216.2 242.1

C16 202.4 200.7 200.7 216.2 242.1

C17 253.8 251.2 250.8 266.7 292.1

C18 204.6 204.6 204.3 216.2 242.1

C19 209.4 208.7 208.2 221.2 247.1

C20 31.7 33.2 31.5 60.5 71.9

C21 55.9 55.9 58.8 85.9 102.5

C22 97.5 94.5 94.3 117.9 126.6

Table 3.2 Battery lifetimes for variable-load profiles (cf. Appendix 3.A) com-

puted with Dualfoil, the diffusion model, KiBaM, and the formula’s of Peukert’s

law and the ideal battery. The numbers for Dualfoil, the diffusion model and

Peukert’s law have been taken from [55].
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Figure 3.5 Computed lifetimes according to the Dualfoil simulation program

versus the diffusion model and the KiBaM for constant loads (a) and variable loads

(b). Next to the two analytical models, the lifetimes according to the formulas of

the ideal battery (2.1) and Peukert’s law (2.3) are shown.
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law and the ideal-battery model are given. The ideal-battery model always predicts

longer lifetimes, up to twice as long for high loads, since it does not take into

account any loss of capacity due to the rate capacity effect. Also, Peukert’s law

overestimates the battery lifetimes for most cases. Only for the low continuous

loads it gives better predictions than the KiBaM and diffusion model.

3.4 Limitations of analytical battery models

In the previous section we have seen that both models give nearly the same results.

In this section, all further results are obtained with the KiBaM, but the conclusions

also apply to the diffusion model.

For the KiBaM the effect of a varying load on the charge delivered by the

battery was analyzed in more detail. A square wave, switching between on (1 A)

and off (0 A), was used as load. In Figure 3.6 the charge delivered is shown as

a function of the frequency of the periodic load. For low frequencies the deliv-

ered charge is constant, because the battery is emptied during the first on-period.

Therefore, the charge delivered is equal to the case of continuous discharge at 1 A.

When the frequency is increased, one sees a sudden discontinuous increase of the

charge delivered by the battery. At the point of this jump, the battery is nearly

empty at the end of the first on-period, and it has an off-period to recover some of

its capacity. The recovered charge can be used in the next on-period, resulting in

a considerable increase of the delivered charge. After this increase, the delivered

charge slowly decreases when the frequency is further increased. The explanation

of this decrease is twofold. First, the off-period is shorter and therefore there is

less time for recovery. Second, the first on-period is shorter and less charge is

delivered to the load during this time.

Further increase of the frequency results in a discontinuous increase of the

charge delivered each time the battery can recover during an extra off-period,

followed again by a slow decrease. The increase gets smaller for higher frequencies

since the extra recovery-time decreases. When the frequency is larger than 10−2

Hz, the charge delivered is constant again. This is due to the short extra off-time,

and the low frequency response at these high frequencies (cf. Section 3.3.2).

For the chosen load and set of battery parameters the charge delivered is highest

for a frequency around 10−4 Hz. However, the position of the peaks depends highly

on the battery parameters and the level of the on-current, and a slight variation

might result in a big change in the charge delivered by the battery. In practice,

the battery parameters vary even between batteries of the same size and type.

Therefore, it does not make sense to do battery lifetime predictions using single

traces of a load profile. The used trace could result in a high performance of the

battery with one set of the parameters, and a low performance with a slightly

different set of parameters.
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Figure 3.6 Charge delivered by the battery as a function of the frequency for a

square wave load. The charge delivered is computed using the KiBaM, with the

parameters c = 0.625, k = 4.5 · 10−5 s−1 and the capacity of 7200 As.

3.5 Conclusions

Of the battery models available in literature, the analytic models are best suited

to be integrated with a workload model. The analysis of the KiBaM and diffu-

sion model shows that the KiBaM is actually a first-order approximation of the

diffusion model. The parameters of the KiBaM can be adapted to make a better

approximation of the diffusion model. The performed experiments with both mod-

els show that this approximation is very good for most practical loads. Therefore,

it is better to use the simpler KiBaM model. In the rest of this thesis we will use

the KiBaM for modeling the batteries.

However, one has to be careful using this type of model when drawing con-

clusions from only a few workloads. A slight change in the battery parameters

can change the battery lifetime dramatically especially when the load switching

frequencies are low. A good way to avoid this problem is to make use of stochastic

workload models. With these models one can capture the full range of different

possible workloads. This results in a battery lifetime distribution, which tells us

the probability of the battery being empty at time t given the type of workload.

Comparing these probabilities one can find the best way to use the battery. Slight

changes in the battery parameters, now, will not affect the results dramatically.
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In the next chapters we present two approaches for extending the system life-

time by smart battery usage. In Chapter 4, we model systems with one battery.

We combine the KiBaM with a Markov model that represents the system work-

load. By adapting the workload one can take advantage of the recovery effect,

and extend the battery lifetime. In the Chapters 5 and 6, systems with multiple

batteries are considered. By switching between the batteries one can give all bat-

teries more time to recover and in this way extend the system lifetime. Different

approaches have been taken to find the best way to switch between the batteries.

3.A Appendix

Case Description Timing (min)

C1 IAT-off-IAT (0, 19.5, 26.0)

C2 IAR-off-IAR (0, 31.0, 41.3)

C3 IST-off-IST (0, 41.0, 54.6)

C4 ISR-off-ISR (0, 74.6, 99.5)

C5 MPEG-off-MPEG (0, 105.7, 140.9)

C6 IAT-off-IAT (0, 19.5, 29.9)

C7 IAT-off-IAT (0, 19.5, 22.1)

C8 IAT-off-IAT (0, 23.4, 29.9)

C9 IAT-off-IAT (0, 15.6, 22.1)

C10 Boot-IAT-IAR-MSD-DSD-TSD-WSD-IAD (0, 0.5, 5.5, 10.5, 35.5, 60.5, 85.5, 110.5)

C11 Boot-WSD-TSD-DSD-MSD-IAR-IAT-IAD (0, 0.5, 25.5, 50.5, 75.5, 100.5, 105.5, 110.5)

C12 Boot-WSD-TSD-DSD-MSD-IAR-off-. . . (0, 0.5, 25.5, 50.5, 75.5, 100.5, 105.5,. . .

Boot-IAT-IAD 130.5, 131.0, 136.0)

C13 Boot-[IAT-IAR-MSD-DSD-TSD-WSD]5-IAD (0, [0.5, 1.5, 2.5, 7.5, 12.5, 17.5]522.5, 110.5)

C14 Boot-[WSD-TSD-DSD-MSD-IAR-IAT]5-IAD (0, [0.5, 5.5, 10.5, 15.5, 20.5, 21.5]522.5, 110.5)

C15 MPEG-Dictation-Talk1-WaV1-MPEG (0, 50.0, 100.0, 150.0, 200.0)

C16 WAV1-Talk1-Dictation-MPEG-MPEG (0, 50.0, 100.0, 150.0, 200.0)

C17 WAV1-Talk1-Dictation-off-MPEG-MPEG (0, 50.0, 100.0, 150.0, 200.0, 250.0)

C18 [WAV1-Talk1-Dictation-MPEG]10-MPEG ([0, 5.0, 10.0, 15.0]1020.0, 200)

C19 [WAV2-Talk3-Dictation-MPEG]10-MPEG ([0, 5.0, 10.0, 15.0]1020.0, 200)

C20 [IAR-IAT]∞ ([0, 1.0]∞2.0)

C21 [IAR-IAT-ISD]∞ ([0, 1.0, 2.0]∞3.0)

C22 5.0 + (5.0 per min) (0, 1.0, 2.0, . . . )

Table 3.3 The simulated variable-load profiles [55].
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Chapter 4

Computing battery lifetime

distributions

In this chapter we combine the Kinetic Battery Model with a stochastic workload

model. The system workload is modeled using a Markov model. The two charge

wells of the KiBaM are integrated into the Markov model as accumulated rewards.

This leads to an inhomogeneous Markov reward model, since the reward rates

depend on the level of the accumulated rewards, as we will see below. We will

show how to compute the distribution and expected value of both the battery

lifetime and the charge delivered by the battery.

In Section 4.1 we briefly introduce the Markov reward models, starting with

the homogeneous case (Section 4.1.1) and extending the theory to the inhomoge-

neous case (Section 4.1.2). Section 4.2 presents the approach to computing the

distribution and expected value of the battery lifetime and the delivered charge.

In Section 4.3 the modeled workloads are presented, and in Section 4.4 the results

are given for these workloads. We end with a conclusion in Section 4.5.

4.1 Markov reward models

4.1.1 Homogeneous Markov reward models

A (homogeneous) Markov reward model (MRM) consists of a finite state space

S = {1, . . . , N}, the transition rate matrix Q ∈ R
N×N and a reward vector r ∈ R

N .

The matrix Q is an infinitesimal generator matrix, i.e., with entries qi,j ≥ 0,

j 6= i, and qi,i = −
∑

j∈S,j 6=i qi,j . The diagonal entry qi,i, which is often denoted

as −qi with qi =
∑

j∈S,j 6=i qi,j , describes the rate at which state i is left. This

rate is to be interpreted as the rate of a negative exponential distribution, i.e.,

the probability that state i is left within s seconds is given as 1− e−qi·s. The next
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Computing battery lifetime distributions

state then is j with probability qi,j/qi. The initial distribution of states at time

t = 0 is denoted as α. The generator matrix Q together with α determines the

Continuous Time Markov Chain (CTMC) X(t).

When in state i, reward is accumulated with rate ri which might be positive or

negative as defined in [32]. The total reward accumulated when residing in state

i from time t1 until time t2 ≥ t1 is denoted yi(t1, t2) and equals

yi(t1, t2) = ri · (t2 − t1). (4.1)

Given the state process X(t), the accumulated reward at time t, Y (t), is defined

as

Y (t) =

∫ t

0

rX(s)ds. (4.2)

The distribution of Y (t), the so-called performability distribution [47, 48], equals

FY (t, y) = Pr {Y (t) ≤ y} . (4.3)

The corresponding density (with respect to y) equals

fY (t, y) =
∂FY (t, y)

∂y

= lim
h↓0

1

h
Pr {y ≤ Y (t) ≤ y + h} . (4.4)

An MRM can have more than one reward structure. State i is then equipped with

reward rates ri,1 through ri,K , i.e., we have a reward matrix R(t, y) ∈ R
N×K

for y ∈ R
K . The accumulated reward is then a vector of random variables

Y (t) = (Y1(t), . . . , YK(t)) and its distribution is defined as

FY (t, (y1, . . . , yK)) = Pr {Y1(t) ≤ y1, . . . , YK(t) ≤ yK} . (4.5)

4.1.2 Inhomogeneous Markov reward models

In the inhomogeneous case, the transition rate matrix Q and the reward vector r

can depend on the time t (time-inhomogeneous) and on the accumulated reward y

(reward-inhomogeneous). We then have Q(t, y) and r(t, y), where y is the current

level of accumulated reward. The reward accumulated between time t1 and t2 ≥ t1
when residing continuously in state i is described by the following differential

equation with initial value yi(t1, t1) = 0:

dyi(t1, t2)

dt2
= ri(t2, yi(t1, t2)). (4.6)

This equation describes the rate of change at the end of the interval [t1, t2] and so

the reward rate depends on t2. The accumulated reward until time t in this case

is defined as

Y (t) =

∫ t

0

rX(s)(s, Y (s))ds. (4.7)
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4.1 Markov reward models

To integrate the KiBaM into an MRM, we need an MRM that is time-homogeneous

but reward-inhomogeneous and has two types of rewards, one for the available

charge and one for the bound charge. We therefore denote the generator matrix

as Q(y1, y2) and the reward rates as R(y1, y2) ∈ R
N×2. The reward accumulated

in a state i between time t1 and time t2 is described by the following differential

equations with initial values yi,1(t1, t1) = yi,2(t1, t1) = 0:







dyi,1(t1, t2)
dt2

= ri,1 (yi,1(t1, t2), yi,2(t1, t2)) ,

dyi,2(t1, t2)
dt2

= ri,2 (yi,1(t1, t2), yi,2(t1, t2)) .
(4.8)

The accumulated reward is then defined as

Y (t) = (Y1(t), Y2(t)) (4.9)

=

∫ t

0

rX(s)(Y (s))ds (4.10)

=

∫ t

0

(
rX(s),1 (Y1(s), Y2(s)) , rX(s),2 (Y1(s), Y2(s))

)
ds, (4.11)

and its distribution equals

F (Y1,Y2)(t, y1, y2) = Pr {Y1(t) ≤ y1, Y2(t) ≤ y2} . (4.12)

We assume that the accumulated rewards are nonnegative and are bounded by

a minimum l = (l1, l2) and a maximum u = (u1, u2). This is reasonable when

considering batteries because their charge is always between 0 and a predefined

capacity C. We then have

f (Y1,Y2)(t, y1, y2) = 0, for y1 < l1 or y2 < l2

or y1 > u1 or y2 > u2. (4.13)

In the following we often consider the joint distribution of state and accumulated

rewards, that is,

Fi(t, y1, y2) = Pr {X(t) = i, Y1(t) ≤ y1, Y2(t) ≤ y2} , (4.14)

with density fi(t, y1, y2). The distribution of the accumulated rewards can then

be calculated using

F (Y1,Y2)(t, y1, y2) =
∑

i∈S

Fi(t, y1, y2). (4.15)

Figure 4.1 shows a schematic representation of the Markov Reward KiBaM

(MRKiBaM). The CTMC states {1, . . . , N} of the MRKiBaM reflect the different

operating modes of the device. Along with the CTMC states, the model has two
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Figure 4.1 Schematic representation of the Markov Reward KiBaM.

accumulated rewards. The first accumulated reward Y1(t) represents the available-

charge well, the second accumulated reward Y2(t) represents the bound-charge well.

The corresponding rates are derived from the KiBaM differential equations (2.4),

using the constants k and c and the equations h1 = y1/c and h2 = y2/(1− c). Let

Ii be the current drawn from the battery in state i ∈ S. The first reward rate

then is

ri,1(y1, y2) =

{
−Ii + k · (h2 − h1), h2 > h1 > 0,

0, otherwise,
(4.16)

and the second reward rate is

ri,2(y1, y2) =

{
−k · (h2 − h1), h2 > h1 > 0,

0, otherwise.
(4.17)

The interesting question for battery-powered devices is “When does the battery

get empty?” In our model, the battery is empty at time t if the available-charge

well Y1(t) is empty. Since the accumulated rewards Y1(t) and Y2(t) are random

variables, we can only indicate the probability that the battery is empty at time t:

Pr {battery empty at time t} = Pr {Y1(t) = 0} (4.18)

The lifetime L of a battery is the instant the battery is perceived empty for the

first time, i.e.,

L = min{t | Y1(t) = 0}. (4.19)
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There is some other work available that addresses performability-like measures

in an inhomogeneous context. In the 1990’s some work has been published on the

computation of transient state probabilities for inhomogeneous Markovian models

without rewards [67, 58, 68]. A more recent paper [62] characterizes the performa-

bility distribution in inhomogeneous MRMs through a coupled system of partial

differential equations that is solved through discretization, and used to derive

systems of ordinary differential equations to determine moments of accumulated

reward.

In what follows we approximate the joint distribution of state process and ac-

cumulated reward by the transient solution of a derived homogeneous CTMC, that

is, by a phase-type distribution. The approximation is applicable if the generator

matrix and the reward rates depend on the current accumulated reward and not on

the current time. This is exactly the case with our battery model and we therefore

restrict the presentation to a two dimensional reward structure, even though the

approach applies for three or more reward types equally well.

4.2 Computing distributions and expected values

In this section we present a numerical algorithm for the computation of the dis-

tribution of the accumulated reward in an inhomogeneous Markov reward model.

It uses a Markovian approximation, in which the computation is reduced to the

transient solution of a homogeneous CTMC via uniformization. The underlying

idea already appeared in [10] and is also used in [30] and [31] (steady-state solu-

tion). The algorithm is described for homogeneous MRMs with positive reward

rates in the Continuous Stochastic Reward Logic (CSRL) context in [28, 29], and

extended to reward-inhomogeneous models with positive reward rates in [17].

4.2.1 Discretization of the state space

The joint distribution of state and accumulated reward (4.14) can be rewritten by

summing over evenly-sized subintervals of the reward intervals [l1, y1] and [l2, y2]:

Fi(t, y1, y2) =

y1
∆ −1
∑

j1=
l1
∆

y2
∆ −1
∑

j2=
l2
∆

Pr







Xt = i,

Y1(t) ∈ (j1∆, (j1 + 1)∆],

Y2(t) ∈ (j2∆, (j2 + 1)∆]






. (4.20)

Here, ∆ is the step-size at which the state space is discretized.

We want to approximate the terms

Pr {Xt = i, Y1(t)∈ [j1∆, (j1+1)∆], Y2(t) ∈ [j2∆, (j2+1)∆]} (4.21)

in such a way that the computation is done for a homogeneous CTMC without

rewards. This is accomplished as follows. An MRM modeling a battery can be
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seen as having an infinite and uncountable state space S × [l1, u1]× [l2, u2], where

state (s, y1, y2) indicates that the “CTMC part” of the MRM is in state s and the

accumulated reward of the first type is y1 and of the second type is y2. For our

approximation we break down the uncountable state space to a finite, countable

one. Let

S∗ = S ×
{

l1
∆

, . . . ,
u1

∆

}

×
{

l2
∆

, . . . ,
u2

∆

}

(4.22)

be the state space of the new CTMC. A state (s, j1, j2) then indicates that the

MRM is in state s and has accumulated rewards in the intervals (j1∆, (j1 + 1)∆]

and (j2∆, (j2 + 1)∆], respectively (for j1 = 0 or j2 = 0 these intervals are left-

closed). In the special case where c = 1 (y2 = 0) only the first accumulated reward

y1 has to be discretized.

The initial distribution α∗ depends on the original initial distribution α and

the initial values for the accumulated rewards a1 and a2:

α∗
(i,j1,j2)

=







αi, a1 ∈ (j1∆, (j1 + 1)∆] and

a2 ∈ (j2∆, (j2 + 1)∆],

0, otherwise.

(4.23)

The distribution of the accumulated rewards is then approximated as

F (Y1,Y2)(t, y1, y2) ≈
∑

i∈S

y1
∆ −1
∑

j1=
l1
∆

y2
∆ −1
∑

j2=
l2
∆

π(i,j1,j2)(t), (4.24)

where π(i,j1,j2)(t) is the transient probability of residing in state (i, j1, j2) at time

t in the derived CTMC.

For battery models, the probability that the battery is already empty at time

t, cf. (4.18), is approximated as:

Pr {battery empty at time t} ≈
∑

i∈S

u2
∆∑

j2=
l2
∆

π(i,0,j2)(t). (4.25)

Recall that the battery is empty when the available-charge well is empty, that is

when j1 = 0.

4.2.2 Transitions in the new generator

In the following we restrict the presentation to the solution of the MRKiBaM.

However, the approach is easily applicable to general inhomogeneous MRMs with

multiple rewards.

Two types of transitions are possible in the new CTMC with generator Q∗:

transitions taken from the original CTMC and transitions between different reward

levels (for each of the two reward types). An entry in the new generator matrix
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Figure 4.2 Structure of the new generator matrix Q∗.
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Q∗ is defined depending on the type of transition it represents. Figure 4.2 shows

the structure of the generator matrix Q∗. Each small block corresponds to a fixed

j1 and j2 and has dimension N × N , each of the big blocks corresponds to one

value of j1.

• Transitions from the original generator. If the original CTMC part of two

states (i, j1, j2) and (i′, j1, j2) are different (i 6= i′) but the reward levels

are identical, the entry is taken from the original generator. Since it is a

reward-inhomogeneous MRM, the current reward level (j1∆, j2∆) must be

taken into account, that is,

Q∗
(i,j1,j2),(i′,j1,j2)

= Qi,i′(j1∆, j2∆). (4.26)

In Figure 4.2 these entries are found in the blocks .

• Transitions indicating the consumption of energy. If the original CTMC

states, that is the first component in the states (i, j1, j2), are identical, the

levels of the first accumulated reward are different and the levels of the second

accumulated reward are again identical, the entry indicates a change in the

first accumulated reward, the available charge well. Such a change can only

happen between neighboring levels, hence, between j1 and j1 − 1 (entries in

blocks ).

Q∗
(i,j1,j2),(i,j1−1,j2)

=
Ii

∆
, j1 > 0 (4.27)

• Transitions indicating the transfer from the bound-charge well to the available

charge well. When charge is transferred between the two wells the level of

the first reward has to increase while simultaneously the level of the second

reward decreases. This corresponds to a transition between state (i, j1, j2)

and (i, j1 + 1, j2 − 1) for j1 < u1/∆, j2 > 0 and h2 ≥ h1:

Q∗
(i,j1,j2),(i,j1+1,j2−1) =

k(h2 − h1)

∆
= k

(
j2

1 − c
− j1

c

)

, (4.28)

where h1 = (j1∆)/c and h2 = (j2∆)/(1 − c). These entries can be found in

the blocks .

The entries in the first row of big blocks in Figure 4.1 correspond to j1 = 0, which

means that the battery is empty. These states are made absorbing, because the

lifetime of a battery is defined to be the first time at which it gets empty, so we

do not allow recovery in this case. However, the recovery transitions could easily

be included. All other off-diagonal entries of Q∗ are zero, the diagonal entries are

defined as the negative row sums.
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4.2.3 Battery lifetime

The pure CTMC approximation allows us to compute the battery lifetime dis-

tribution for a given workload model. This CTMC approximation is, in fact, a

phase-type distribution for a given workload model. Its absorbing states are the

ones where the battery is perceived empty, that is, where the available charge Y1

reaches zero. Such state is of the form (i, 0, j2), where i is an original MRM state,

and j2 is the discretized level of the charge in the bound-charge well.

The generator matrix Q∗ can be arranged in such a way that

Q∗ =

(
0 0

T0 T

)

, (4.29)

where T contains the rates of transitions between non-absorbing states, and T0 is

the matrix with the rates from each non-absorbing state to the absorbing states,

which indicate that the battery is empty. If we merge all absorbing states into

one, the generator matrix reduces to:

Q∗ =

(
0 0

T 0 T

)

, (4.30)

where T 0 is a column vector with the cumulative rates to the absorbing state.

The represented phase-type distribution is an approximate distribution for the

random variable describing the time it takes for the battery to be emptied. This

distribution can efficiently be computed using uniformization [27].

The expected value of a random variable L having a phase-type distribution is

described by [50]:

IE [L] = −αT−11, (4.31)

where 1 is a column vector of appropriate size with each element equal to one.

Thus, if we solve the system of linear equations

xT = −α, (4.32)

we have

IE [L] =
∑

i

xi. (4.33)

Using this approach we can approximate the expected battery lifetime for a given

workload.

4.2.4 Delivered charge

The amount of charge that is actually delivered by the battery depends on the

workload. When we look at the possible absorbing states of the approximating

CTMC, we see that if the CTMC ends up in a state sa = (i, 0, j2) it means that the
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delivered charge is approximately C − j2∆. We can thus compute approximations

to the distribution and expected value of the delivered charge.

Since for these computations the time until absorption is not important, it

suffices to consider the embedded discrete-time Markov chain with probability

matrix P∗, where

P ∗
s,s′ =







1, if s = s′ and Q∗
s,s = 0,

Q∗

s,s′

−Q∗

s,s
if s 6= s′ and Q∗

s,s 6= 0,

0, elsewhere.

(4.34)

Following the notation introduced for phase-type distributions we can arrange P∗

such that

P∗ =

(
I 0

R0 R

)

. (4.35)

The probability As,sa
to end in a certain absorbing state sa, having started in

state s is determined by the following system of linear equations:

As,sa
=

{
1, if s = sa,
∑

z P ∗
s,zAz,sa

, otherwise.
(4.36)

If B is the matrix consisting of the As,sa
where s is a transient state, the system

of linear equations can be written as:

RB + R0I = B or (I − R)B = R0. (4.37)

This system can be solved for one column of R0 at a time using standard solution

algorithms. The complete matrix A is obtained by extending the above computed

matrix B to include also the absorbing states as initial states:

A =

(
I

B

)

. (4.38)

Multiplying the initial distribution vector α with A gives the probability distribu-

tion a to end up in the different absorbing states,

a = αA. (4.39)

One element a(i,0,j2) denotes the probability that the battery gets empty with a

residual charge of j2∆, and thus having delivered a charge of C − j2∆. In this way

one can obtain the distribution of the delivered charge. The expected delivered

charge is given by:

IE [dC] = C −
∑

(i,0,j2)
is absorbing

j2∆a(i,0,j2). (4.40)
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space time

lifetime distribution charge distribution

expected lifetime and charge

O
(

N2 · y1

∆
· y2

∆

)

O
(

N2 · qt · y1

∆
· y2

∆

)

O
(

N2 · y1

∆
· y2

∆

)

Table 4.1 Complexities for the computation of the distribution and expected

value of the battery lifetime and the delivered charge.

4.2.5 Complexity

Table 4.1 shows the time complexity of the algorithms used to compute the distri-

bution and expected value of the battery lifetime and delivered charge. The space

complexity is determined by the size of the generator matrix, which is the same

for all algorithms. We only need to store the nonzero elements. Figure 4.2 shows

that only the small blocks contain nonzero elements. These blocks have the size

of the generator matrix of the original workload. Since this matrix may be dense,

the space complexity is quadratic in the number of states of the workload (N).

The big blocks contain y2

∆ × y2

∆ small blocks and the total matrix contains y1

∆ × y1

∆

of big blocks. Since only three diagonals of the big blocks, and per big block only

one diagonal of small blocks, contain nonzero elements, the space complexity is

linear in y1

∆ and y2

∆ .

Regarding the run time of the uniformization algorithm used to compute the

lifetime distribution, the algorithm is linear in the number of nonzero elements

of the generator matrix [61]. For the MRKiBaM, the step size ∆ enters as ∆−2.

However, the step size is also coded into the generator matrix of the new CTMC

by multiplying the reward rates with 1
∆ (see the definition of Q∗). The transient

solution of the new CTMC has a time complexity linear in the uniformisation

constant q and the time t for which the transient probabilities are computed. For

small ∆, this uniformization constant becomes linear in 1
∆ , hence, we obtain an

overall time complexity in ∆−3.

The algorithms for computing the expected lifetime and the distribution and

expected value of the delivered charge have the same complexity. In all these

algorithms a set of linear equations needs to be solved. The time complexity for

this is at most cubic in the number of states in the generator matrix, when an

algorithm like Gaussian elimination is used [61]. However, this does not take into

account the sparse structure of the generator matrix. When we do take this into

account, we see that the complexity is improved to O
(

N2 · y1

∆
· y2

∆

)

, which is only

quadratic in 1
∆ .
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Figure 4.3 Simple on/off model (SWL1).

4.3 Stochastic workload models

In the following we consider three stochastic workload models.

Stochastic workload 1 (SWL1). First we concentrate on simple on/off models

like the ones used in [57] with the only difference that those were not stochastic.

For a given frequency f , the workload toggles between the off-state (I = 0 A) and

the on-state (I = 0.96 A). We model the on/off times as Erlang-K distributions

such that with increasing K they become close to deterministic.

Figure 4.3 shows the state-transition diagram for this simple model. For fre-

quency f , all transitions have rate

λ = 2 · f · K.

The expected on and off times, respectively, are then K/(2fK) = 1/(2f) which

leads exactly to a frequency f .

We furthermore consider two workload models of a small battery-powered de-

vice.

Stochastic workload 2 (SWL2). The first, simple one consists of three states as

depicted in Figure 4.4. Initially, the model is in idle state. With rate λ = 2 per

hour there is the necessity to send data over the wireless interface. If such data is

present, the model moves into the send state. The sending of data is complete in

10 minutes on average (resulting in a sending rate of µ = 6 per hour). From the

idle state the device can also move into a power-saving sleep state, this is done

– on average – once per hour (τ = 1). The power-consumption rate is low when

idling (I0 = 8 mA), it is high when sending data (I1 = 200 mA) and negligible in

the sleep state (I2 = 0 mA).

Stochastic workload 3 (SWL3). To extend the overall battery lifetime it seems

to be beneficial to have short periods of high sending activity (bursts) and long

periods without sending activity, since the longer idle periods will give the battery

more time to recover from the high loads while sending.
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Figure 4.4 State transition diagram for the simple model (SWL2).

rate

label (h−1)

λ 2

µ 6

τ 1

switch on 1

switch off 6

λburst 182

Table 4.2 Transition rates of the simple and burst model.

In the modeled wireless device this could be achieved by accumulating the data

to be transmitted and then send all in direct sequence instead of transmitting

smaller amounts of data more frequently. This can be modeled by buffering the

flow of arriving data. When the flow is active, data arrives with a very high rate.

If the flow is inactive, the device can safely go to sleep. Figure 4.5 shows a state-

transition diagram for such a burst model. It has the same sending rate µ and

timeout rate τ as the simple model. Bursts start with rate switch on=1 per hour

and stop with rate switch off=6 per hour. To make any results of the latter two

models comparable, we have chosen λburst = 182 per hour such that the steady-

state probability to be in off− send or on− send in the burst model is the same

as the probability to be in send in the simple model. As could be expected, the

steady-state probability to be in sleep is higher in the burst model than in the

simple model.

4.4 Results

In this section we evaluate the distribution and expected value of the battery

lifetime and delivered charge for the systems described in Section 4.3. We validate

our Markovian approximation algorithm by comparison with detailed simulations
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Figure 4.5 State transition diagram for the burst model (SWL3).

Frequency Experimental KiBaM Modified KiBaM

lifetime [57] lifetime lifetime

stochastic [57] numerical

(Hz) (min) (min) (min) (min)

Continuous 90 91 90 89

1 193 203 193 193

0.2 230 203 226 193

Table 4.3 Experimental and computed battery lifetimes. The computations are

done with the KiBaM and the modified KiBaM [57].

using the analytical KiBaM.

4.4.1 Modeled battery

The battery we model in this section is a Ni-MH battery, which was also modeled

by Rao et al. in [57]. The battery has a capacity of 7200 As. The battery parame-

ters c and k are computed from the experimental data given in [57]. The parameter

c can be calculated from the capacity delivered under very large and very small

loads. At very large loads the battery lifetime is short, and there is no time for

the charge to move from the bound-charge well to the available-charge well. The

capacity delivered equals the amount of charge in the available-charge well. At

very small loads, however, all the charge from both the bound and available-charge

well is delivered. The quotient of these two numbers is exactly c; from [57] we take

c = 0.625. We set the parameter k in such a way that the calculated lifetime for

a continuous load of 0.96 A corresponds to the experimental value given in [57].

This results in k = 4.5 · 10−5 s−1.

In Table 4.3, second and third column 2, we present the battery lifetimes

according to the KiBaM and some experimental results given in [57]. We see that

for KiBaM the lifetime is constant for both frequencies. However, the experimental

results show a longer lifetime for the slower frequency. To overcome this problem,

Rao et al. have developed a modified KiBaM [57]. In the modified model the

recovery rate has an additional dependence on the height of the bound-charge well,
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Figure 4.6 Battery lifetime distribution for the on/off-model (f = 1 Hz, K = 1,

C = 7200 As, c = 1, k = 0 s−1).

making the recovery slower when less charge is left in the battery. With a stochastic

simulation of this model they obtain very good results for the battery lifetimes, see

the fourth column in Table 4.3. However, we numerically evaluated the modified

KiBaM with a deterministic workload and saw that the lifetime still does not

depend on the frequency, as indicated in the last column in Table 4.3. Personal

correspondence with the authors of [57] did not shed light on the discrepancy.

4.4.2 On/Off model (SWL1)

We start with a degenerate case of the KiBaM, where the bound-charge well is

empty from the beginning and the complete charge is in the available-charge well.

There is no transfer of charge between the two wells. We choose the simplest

Erlang model (see Figure 4.3) for frequency f = 1 Hz with K = 1, that is, on-

and off-times follow a negative exponential distribution with rate λ = 2 s−1. The

battery capacity is C = 2000 mAh = 7200 As; the KiBaM constants are c = 1 and

k = 0 s−1.

Figure 4.6 shows the resulting lifetime distribution calculated by simulation

and using the approximation algorithm using different step-sizes ∆.

The simulation results are obtained by 10000 independent runs. They suggest

that the battery lifetime is close to deterministic with a mean of about 15000 sec-
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Figure 4.7 Battery lifetime distribution for the on/off-model for varying values

of K (f = 1 Hz, C = 7200 As, c = 1, k = 0 s−1, ∆ = 5 As).

onds. This is reasonable since the overall time spent in the on-state in one of the

runs has approximately an Erlang15000(2 s−1) distribution, which is a good approx-

imation of a deterministic distribution with mean 7500 seconds. In 7500 seconds

the consumed energy is 7500 s · 0.96 A = 7200 As = C. For pure deterministic

on- and off-times, the analytical KiBaM also yields a lifetime of 15000 seconds.

For decreasing step-size ∆ the curves from the approximation algorithm ap-

proach the simulation curve. This is an indication for the correct operation of the

algorithm. However, even for ∆ = 5 As, the approximation is not really a good

one, since it is in general difficult to closely approximate an almost deterministic

value through a phase-type distribution.

We also evaluated the battery lifetime of the on/off-model for better approx-

imations to the deterministic on- and off-times, that is, for K > 1 in the Erlang

model. The results are given in Figure 4.7. The three curves for K = 1, K = 4

and K = 16 completely overlap. The added phases in the on/off model do not

yield any significant improvement. This is due to the fact that the approximation

is not good enough to capture the relatively small differences. Therefore, all the

remaining results for the on/off model are obtained only for K = 1.

Figure 4.8 shows the lifetime distribution of the on/off model for c = 0.625,

that is, initially 62.5% of the charge is in the available-charge well and 37.5%

is in the bound-charge well. The constant for the flow between the two wells is
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Figure 4.8 Battery lifetime distribution for the on/off model (f = 1 Hz, K = 1,

C = 7200 As, c = 0.625, k = 4.5 · 10−5 s−1).

k = 4.5 · 10−5 s−1.

The curves for the approximation algorithm are quite far away from the one

obtained by simulation. Unfortunately it is not feasible to consider a substantially

smaller ∆ for this example. The CTMC for ∆ = 5 As has about 9.7 · 105 states

and the generator matrix Q∗ has about 1.7 · 106 non-zero entries. For t = 10000 s,

uniformization requires more than 2.3 · 104 iterations, each with 1.7 · 106 multipli-

cations. For t = 20000 s, more than 4.6 · 104 iterations are needed.

Although the distribution is hard to approximate, the expected battery lifetime

can be well approximated by the MRKiBaM. The results of the computations of the

expected lifetime for different values of ∆ are given in Table 4.4. The simulations

result in an expected lifetime of 12175 s, whereas the expected lifetime computed

with the MRKiBaM for ∆ = 5 As is 12040 s. This is a difference of only 1.1%.

Even for ∆ = 100 As the difference is only 3.0%, with an expected value of 11815

s for the battery lifetime.

In Figure 4.9 we compare the lifetime distribution of the two cases already

described with a third scenario, where the initial capacity of the battery is only

4500 As= 0.625 · 7200 As and completely in the available-charge well. In the first

case (C = 7200 As, c = 1) the battery lasts generally longer than in the second

case (C = 7200 As, c = 0.625), because all charge is available. In the third case

(C = 4500 As, c = 1), the battery lifetime is in general shorter, because there is
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∆ (As) 100 50 25 5

IE[L] s 11815 11930 11990 12040

error (%) 3.0 2.0 1.5 1.1

Table 4.4 The expected lifetime for the on/off-model according to the MRKiBaM

for different values of ∆ and the error compared to the simulation result.
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Figure 4.9 On/off model with different initial capacities (∆ = 5 As).

no bound-charge to be transferred to the available-charge well.

Figure 4.10 shows the distribution of the delivered charge of the on/off model

with K = 1 and c = 0.625. For the delivered charge distribution the case with

c = 1 is not interesting, since in this case always all the charge will be drawn from

the battery. The curves computed with the Markovian approximation approach

are step functions, since in the approach we discretize the charge levels of the

available and bound charge wells. The simulation results are, again, based on

10000 independent runs. Like with the battery lifetime, the simulations show that

the delivered charge is close to deterministic. The mean of the delivered charge

of the simulations is 5845 As, with a standard deviation of 7.9 As. We see, again,

that the Markovian approximation does not approach the simulations well. Even

for ∆ = 5 As the approximation is not good.

Like the expectation of the battery lifetime, the expectation of the delivered

charge computed with the Markovian approximation does approach the simulation
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Figure 4.10 Distribution of the delivered charge for the on/off-model (f = 1 Hz,

K = 1, C = 7200 As, c = 0.625, k = 4.5 · 10−5 s−1).

∆ (As) 100 50 25 5

IE[dC] As 5672 5726 5755 5779

error (%) 3.0 2.0 1.5 1.1

Table 4.5 The expected delivered charge for the on/off-model according to the

MRKiBaM for different values of ∆ and the error compared to the simulation

result.

results very well. The results are given in Table 4.5. For ∆ = 5 As the expected

delivered charge is 5779 As, which is only 1.1% less than the mean value of the

simulations, which is 5845 As.

4.4.3 Simple & burst model (SWL2 & SWL3)

We now evaluate and compare the results for the simple and the burst model. For

the computations of the simple and burst model the battery capacity has been set

to 800 mAh. This is the capacity of batteries that are often used in mobile phones.

The other battery parameters, c and k are kept the same.

For the simple model, it is possible to compute good approximations using the

Markovian approximation algorithm. Figure 4.11 shows the lifetime distributions

computed for different values of ∆. We see that for decreasing ∆ the distributions
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Figure 4.11 Battery lifetime distribution for the simple model.
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initial capacities (∆ = 0.5 mAh).
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Figure 4.13 Distribution of the delivered charge for the simple model.

converge towards the distribution obtained by simulation. For ∆ = 1 mAh a good

approximation is obtained.

The difference in accuracy with the on/off model could be caused by the dif-

ference in the rates of the workload change. In the simple model for ∆ = 1 mAh

the change of workload state is much slower than the change in the available and

bound charge. In contrast, even for the smallest discretization step of ∆ = 5 As,

in the on/off model the workload change is faster than the change in available and

bound charge. The change in available and bound charge could be made faster

by a further decrease of ∆. However, this leads to a state space which can not be

analyzed anymore.

In Figure 4.12 the effect of using the KiBaM model, instead of an ideal battery,

is shown. The figure compares the battery lifetime distribution according to the

KiBaM with two distributions using an ideal battery. In the first case the ideal

battery has a capacity limited to the available charge of the KiBaM, i.e., 500 mAh.

In the second case the ideal battery has a capacity that also includes the bound

charge, i.e., 800 mAh. From Figure 4.12 one can see that if only 62.5% of the

capacity becomes available at all (leftmost curve) the battery is almost certainly

empty (with probability greater than 99%) after about 17 hours. If the rest of the

charge is initially in the bound-charge well, the battery gets almost surely empty

after about 23 hours, if all capacity is readily available (rightmost curve), after

about 25 hours. Hence, for this workload model it is in general not possible to
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make use of the total capacity of 800 mAh, if it is distributed between the bound-

charge well and the available-charge well. However, a large fraction of the total

capacity becomes available, which is shown by the fact that the middle curve is

closer to the right curve than to the left curve.

In Figure 4.13 the distribution of the delivered charge for the simple model is

given for different values of ∆ and simulations. The distributions obtained with

Markovian approximation approach the simulation from the left. With the coarse

discretization, ∆ = 25 mAh, the delivered charge is severely underestimated. For

∆ = 1 mAh a good approximation is obtained.

In Figure 4.14 we finally compare the results of the simple and the burst model.

The burst model condenses the send activity and consequently spends more time in

sleep mode. This lets the battery last longer, that is, its lifetime distribution curve

lies for the majority to the right of the one for the simple model. For example,

after 20 hours the battery is empty with a probability of about 95% when using

the simple model while it is empty with probability only about 89% in case of the

burst model. The expected lifetime of the burst model is 14.46 h. This is 2.8%

longer than the expected lifetime of the simple model, which is 14.06 h.

However, Figure 4.15 shows that with the burst model the battery delivers

less charge than with the simple model, the distribution of the burst model lies

completely to the left of the distribution of the simple model. The expected
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Figure 4.14 Battery lifetime distribution for the simple and the burst model

(C = 800 mAh, c = 0.625, ∆ = 5 mAh).

60



4.5 Conclusion

delivered charge in the burst model is 0.9% lower than the expected delivered

charge in the simple model, 733.7 mAh and 740.3 mAh respectively. This is

highly counterintuitive. One would expect the battery to deliver more charge in

the burst model, while the burst model leads to longer battery lifetimes.

These results imply that the gain of more idle time in the burst model, and

therefore a lower average discharge current, is not fully transferred into an exten-

sion of the battery lifetime. Although in the burst model the battery has more

time to recover, the bursts of on periods result in less charge to be drawn from

the battery.
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Figure 4.15 Distribution of the delivered charge for the simple and the burst

model (C = 800 mAh, c = 0.625, ∆ = 0.5 mAh).

4.5 Conclusion

In this chapter we combined the analytical KiBaM with a Markov model, that

represents the stochastic workload, into the MRKiBaM, a reward-inhomogeneous

Markov reward model for batteries. With this model we can assess the distri-

bution and expected value of both the battery lifetime and the charge delivered

by the battery for a stochastic workload model. For the actual computation we

provide an efficient approximation algorithm where the accumulated rewards are

discretized. The computation of the battery lifetime distribution then boils down

to the transient solution of a CTMC.
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With an implementation of this algorithm we have evaluated the lifetime of

some small workload models, thereby also comparing to simulation results. Trying

to approximate the almost deterministic lifetime for the on/off model results in a

poor accuracy. In contrast, for the simple and burst mode of a wireless device,

the algorithm gives good results. Also, the computations of the distribution of the

delivered charge result have higher accuracy for the simple and burst workload

models than for the on/off model. However, the computations of the expected

value of the battery lifetime and the delivered charge give good results even for

the on/off model.

In the comparison between the simple and the burst model we see the impor-

tance of including the battery properties into the model for predicting the battery

lifetimes. The burst model with its longer idle time and lower average current did,

indeed, give an improvement in battery lifetime. However, the delivered charge

for the burst model was lower than for the simple model. This means the lifetime

improvement was not as long as one would expect when a fixed battery capacity

was assumed. The reason behind this remains not completely understood.
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Chapter 5

Computing best battery

schedules using priced timed

automata

Some mobile devices, for example laptop computers, have the option to connect

a second battery in order to improve the system lifetime. Most of these systems,

however, use the batteries in sequential order, that is, the second one is only used

when the first one is empty. Whereas this is clearly an effective way to prolong the

systems lifetime, it is not the most efficient one. By regularly switching between

the batteries one will give both batteries more time to recover, and in this way

possibly extend the lifetime even more than twice the lifetime of a single battery.

In this chapter we give an approach to find the best battery schedule by using

priced timed automata (PTA). Section 5.1 introduces the idea behind battery

scheduling, and gives a short overview of the related work performed in this area.

In Section 5.2, we give an introduction to PTA. Section 5.3 shows how the KiBaM

can be modeled using PTA. In Section 5.4, this model is validated to the original

KiBaM. In Section 5.5, the PTA model is used to compute the battery schedule

that results in the longest lifetime for a set of test loads. We compare these results

with the lifetimes obtained by some simple scheduling strategies. In Section 5.6

the system lifetime is computed for randomly generated loads. We end this chapter

with some conclusions in Section 5.7.

5.1 Battery scheduling

Influencing the usage pattern of a battery is hard in a single battery system. How-

ever, some devices allow the connection of multiple batteries. In such systems one
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can, instead of using the two batteries sequentially, switch between the batteries.

By applying battery scheduling, one can then easily influence the usage pattern of

the batteries.

Battery scheduling may also be beneficial in sensor networks. Although each

sensor, in general, is powered by only one battery, the entire network is powered

by many. Often there are several routes from a sensor node to the data sink to

send the collected data through the network. To keep all the sensors powered

as long as possible, battery-aware routing has to be done, i.e., the decision on

which sensor has to forward the data has to be based on the status of the sensor’s

batteries. Switching from one route to the other will give the batteries time to

recover and thus give a longer lifetime to the sensor network as a whole. In this

way, the routing problem is turned into a battery scheduling problem.

Already, scheduling of batteries has attracted quite some attention in the lit-

erature. The most important scheduling schemes that are studied are:

• Sequential scheduling: another battery is only picked when the previous one

is empty.

• Round robin scheduling: at fixed moments in time another battery is used.

The batteries are used in a fixed order.

• Pick-best scheduling: at fixed moments in time the status of all batteries

is checked and the best battery is used. What is the best battery can be

determined in several ways, for example the battery with the highest voltage,

or the battery that has been used for the shortest period of time.

We consider here the main approaches.

In [15], Chiasserini and Rao use a discrete-time Markov battery model, cf.

Section 2.5.1, to compare three different scheduling schemes in a multiple battery

system. The complexity of the used model limits the battery capacity to very small

batteries. The three schedulers that are considered are the round robin, best-of-

two scheduler and a random scheduler. The schedulers are compared for different

job arrival rates. The results show that the best-of-two scheduler outperforms the

other two. However, the model does not allow for any optimization with respect

to battery schedule.

Also in [7], the analysis is limited to a set of simple schedulers. Benini et al. [7]

consider sequential scheduling, round robin scheduling and various types of best-

of-two scheduling, where either the output voltage or the time that a battery has

been unused determines which battery is to be scheduled. The different scheduling

schemes are applied to several battery configurations containing up to four batter-

ies. The loads that have been used are simple continuous and intermittent loads

and two real-life example load profiles. Which scheduler performs best depends on

the applied load. However, it is shown that for round robin scheduling the system

lifetime increases when the switching frequency is increased.
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A completely different battery scheduling approach is taken in [70]. Instead of

using two identical batteries, Wu et al. use two batteries with different discharge

characteristics. The first battery has a high capacity and performs well at low

discharge currents, whereas the second has a lower capacity but performs better

at high discharge currents. The scheduling decision is taken with respect to the

level of the discharge current. In this way both batteries are used only for currents

where they perform the best. It is shown, both analytically and by simulations,

that this way of scheduling may lead to a 30% lifetime improvement compared to

using only one type of battery.

In all this work the battery scheduling is limited to deterministic scheduling

schemes. All show that battery scheduling gives longer system lifetime than when

the batteries are used sequentially. However, the improvement varies a lot be-

tween the different modeling approaches. Where Benini et al. predict an average

improvement of approximately 11% for a two battery system, Chiasserini shows

improvements of more than 100%. Also, they do not indicate whether longer

lifetime could be possible by using even smarter scheduling. In [59], Sarkar and

Adamou propose an algorithm for computing an optimal scheduling scheme based

on the stochastic battery model of Chiasserini and Rao. To do this they translate

the problem to a stochastic shortest path problem. The optimal solution can only

be computed for small batteries. However, they do show that for the modeled

pulsed load best-of-two scheduling performs close to optimal.

In this and the next chapter we take two new approaches to finding the optimal

battery schedule. The first is by using PTA, which are proven to be well fitted for

finding optimal schedules [6]. In this approach the scheduling moments and work-

load are set in advance and the PTA model is used to compute which schedule will

lead to the longest lifetime. In Chapter 6 an analytic approach to the scheduling

problem is taken. In this approach we loosen the restriction on the moments the

scheduling decision has to be taken; at any point in time the scheduler may switch

the battery that is used.

5.2 Priced timed automata

In this section we informally describe networks of timed automata (NTA), used as

input to Uppaal Cora [65]. Uppaal Cora is a branch of Uppaal [66] for Cost Optimal

Reachability Analysis. As we only use the PTA as a modeling tool, we introduce

the important ingredients by means of an example. A extensive formal description

of priced timed automata can be found in [5].

5.2.1 Networks of timed automata

The basic ingredients of NTA are locations, switches, clocks, guards, invariants,

assignments, and channels. An NTA is composed of a collection of timed automata,
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which run in parallel and communicate via the channels.

brightlowoff

press?

y < 5

press?y >= 5

press?

press?

y := 0

idle press!

(a) Lamp (b) User

Figure 5.1 Model of lamp.

Figure 5.1 (example taken from [4]) depicts a very simple NTA, comprising only

two components. The network models a lamp, which can be turned on and off by

a user pressing a switch. In Figure 5.1(a) the behavior of the lamp is modeled. We

see three locations off, low, and bright, which denote the three states the lamp can

be in: in the location off the lamp is off, in location low, it is on, giving a low light,

and in location bright, it shines brightly. Location off is the starting location. The

switch from off to low (abbreviated off→ low) is labeled with a receive operation

(signified with the question mark) on channel press. This switch can only be taken

if the timed automaton in Figure 5.1(b) (a model of the user) executes the switch

labeled with a send operation (signified with the exclamation mark) on channel

press, i.e., both timed automata synchronize on channel press.

While off→ low is executed, clock variable y is reset to 0 by the assignment

y := 0. Clocks are real-valued variables which are used to measure time: clock

values increase linearly with rate 1 as time progresses. Clocks are used to express

enabling- and urgency-conditions depending on time. For example, the switch

low→off is labeled with a guard y >= 5, which allows this switch to be taken only

if clock y has a value greater or equal to 5. In that case, if the user presses the

button again, the lamp goes off. The switch low→ bright, on the other hand, is

guarded by expression y < 5, i.e., the negation of the previous guard. Thus, if the

user presses the button a second time within 5 time units, the lamp switches to

brighter light. From location bright, another button press will switch the lamp off

again, unconditionally.

Invariants are used to express urgency conditions, i.e., unlike guards, which

express when something can happen, they express when something must happen,

without delay. In Figure 5.2 we see a slightly modified version of the lamp au-

tomaton. The lamp is now switching off automatically, without user intervention.

Switches low→off or bright→ off are thus now unsynchronized. Instead, locations

low and bright are now labeled with the invariant y <= 10 each, which expresses

that both locations can only be entered and occupied as long as y ≤ 10. This

means that the respective locations must be left 10 time units after the lamp was
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bright

y <= 10

low

y <= 10

off y < 5

press?

press?

y := 0

Figure 5.2 Model of automatic lamp.

switched on at the latest, which in both cases means that the lamp goes either via

low→off or bright → off to location off.

Using a synchronizing channel to model the communication for the automatic

lamp is unrealistic in the sense that, if the lamp is in location bright, then the user

can not press the button (because the send operation press! has no corresponding

receive operation). A channel may be declared a broadcast channel, which means

that a send operation has to be synchronized with those processes only which are

ready to execute a receive operation on that channel. If no process is ready to do

so, the send operation can be executed anyway. In our example, if press is declared

a broadcast channel, the press! of the user can be executed even if the lamp is in

location bright. We will make use of this 1-to-many synchronization feature.

Switching on a lamp and letting it burn uses energy, which causes costs. Up-

paal Cora provides the possibility to keep track of costs accumulated during the

operation of the modeled system. For this purpose, there is a special variable cost,

which can be increased explicitly during switching by an update, or implicitly by

specifying a rate. In Figure 5.3, switch off→ low is labeled with update cost+=50,

indicating that it takes 50 energy units to switch on the lamp. In locations low and

bright we have the extra “invariants” cost′ == 10 and cost′ == 20, respectively,

which indicate that the energy consumption is 10 and 20 units per time unit in the

respective locations. When staying in these locations, cost is implicitly increasing

with time, with rate 10 and 20, respectively.

bright

y <= 10 && 
cost’ == 20

low

y <= 10 &&
cost’ == 10

off y < 5

press?

press?

y := 0,
cost += 50

Figure 5.3 Model of automatic lamp with costs.

In order to express the prioritized execution of certain transitions, locations
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can be marked Committed. If one component is in a committed location, then

the next switch to take must emanate from a committed location, and it must be

taken without any delay.

It is possible to use simple data types in NTA like arrays and structures, based

on integers, which can be declared either local to a single, or global to all au-

tomata. These data types can be manipulated in assignments, which are executed

while switches are executed, and can be referenced in guards and—with some

restrictions—also invariants. In our NTA battery model we will make extensive

use of this feature.

5.2.2 Schedule generation using PTA

Uppaal Cora is a model checker for PTA, i.e., a tool to check whether the modeled

PTA has certain properties which are expressed as logic formulae in a fragment of

the timed computation tree logic (TCTL) [1]. An important problem to solve for

PTA to make model checking feasible is minimum-cost reachability, i.e., given a

PTA and a target state (where a state is a combination of a location and additional

information about the clocks), determine the minimal cost of all paths leading from

the initial location to the target state [5], while meeting a certain time bound. In

[2, 5] it has been shown independently that this problem is effectively computable.

This very important result allows us to use PTA for schedule generation as

follows. PTA models can be nondeterministic. A model checker like Uppaal Cora

can find paths—starting in the initial location—through the state space of the

network of timed automata to target states and compute the minimal cost to

do so. These paths resolve nondeterministic choices on the way to the target.

The idea of schedule generation with model checkers is to model the system to be

scheduled, which is in our case a combination of resources and load, but to leave the

scheduling decisions open, i.e., nondeterministic. If a certain scheduling objective

can be formulated as a state property of this system, then the model checker can

be employed to find such a state and the path leading to it; the determined path

is a schedule. The scheduling objective can depend on timing properties (“look

for the fastest schedule”), or, in the case of Uppaal Cora, on the cost variable: the

optimization criterion is the minimality of the accumulated cost, i.e., Uppaal Cora

tries to find the path with the lowest cost leading to the target state. This is what

we will use to generate battery schedules.

5.3 A timed automata model for KiBaM

In this section we introduce the network of timed automata used to model the

KiBaM. We denote this model by TA-KiBaM.
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5.3.1 Discretization of the KiBaM

To be able to use the KiBaM in the timed automata setting of Uppaal Cora, one

needs to discretize the model, in particular the total charge, and height difference

in the KiBaM, since Uppaal Cora only uses integer variables. The battery behav-

ior, discharge and recovery, is deterministic for a given load. Therefore, we also

discretize the time in order to be able to define the points in time when charge is

drawn from the battery or the battery recovers some charge. From the equations

of the transformed KiBaM (cf.(3.2)):







dγ
dt

= −i (t) ,

dδ
dt

=
i (t)
c − k′δ,

(5.1)

it follows that the total charge only changes when a current is drawn from the

battery. The height difference changes by two processes: it increases when a

current is drawn, and decreases when charge flows from the bound-charge well to

the available-charge well. In the discretization of the model we separate these two

processes.

We discretize time in steps of size T . Within a time step the discharge current

is assumed constant. For a constant current (I), the total charge will decrease

linearly. The total charge is discretized in N parts of size Γ = C/N . It will

take Γ/ (I · T ) time units to decrease the total charge with one charge unit at a

discharge rate of I.

At the same time, the discharge with current I will increase the height dif-

ference with Γ/c. This will be the step size of the discretization of the height

difference. Once some charge is drawn from the available-charge well, charge will

start to flow between the bound and available-charge well. This is a non-linear

process, described by the second part of the second equation in (5.1):

dδ

dt
= −k′δ. (5.2)

The solution to this differential equation is given by:

δ(t) = δ(t0)e
−k′t. (5.3)

If at time point t0 we have δ(t0) = m ·Γ/c, then the time t needed to decrease the

height difference with one unit to δ(t) = (m − 1) · Γ/c, is

t = − 1

k′
· ln
(

m − 1

m

)

. (5.4)

To obtain the number of time steps of size T it takes to decrease the height

difference by one unit, we divide this time by T and round to the nearest integer.
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5.3.2 Towards modeling

In the TA-KiBaM, the relevant information of the battery state is kept in arrays

of integers. We assume that every battery in the model has a local variable id, set

with a value different to that of all other batteries.

We keep track of the total remaining charge and the height difference of the two

wells in numbers of charge units. We introduce two arrays, n gamma and m delta,

of the size equal to the number of batteries. n gamma[id] is the total charge left in

battery id, m delta[id] the height difference. Thus, initially n gamma[id] = N and

m delta[id] = 0.

The recovery characteristics of a battery is described by the array recov times.

The contents of this array is pre-computed using (5.4). If the height difference

of the battery is m delta[id], then recov times[m delta[id]] is the time it takes to

decrease the height difference by one charge unit. The array recov times is inde-

pendent of the load put on the battery. The load is described by three arrays of

equal length. Figure 5.4 gives an example of a load and the corresponding arrays.

The size of T is set to 1 s and the Γ is set to 1 As.

• In array load time, the times are stored when the load changes. The times

are defined absolutely, counted from system start, i.e., load time contains a

strictly increasing sequence of numbers. This array defines certain epochs of

the battery usage period, where load time[j] is the time where epoch j ends

and epoch j + 1 starts.

• The array cur times has the same size as load time and gives the number of

time units it takes to draw some charge units from the battery during the

epochs.

• Array cur has the same size as load time and together with the array cur times

it defines the current drawn from the battery during an epoch. The array

gives the number of charge units drawn from the battery during one of the

periods defined in cur times. The current (Ij) drawn from the battery during

epoch j is given by the equation:

Ij =
cur[j]Γ

cur times[j]T
. (5.5)

In the example, during the periods with positive current, every two seconds

one charge unit of 1 As is drawn from the battery.

The three arrays are created using an external program, and imported into the

TA-KiBaM. The described variables are listed for reference in Table 5.1.

The criterion of when a battery is empty is given by γ(t) = (1 − c)δ(t), see

Equation (3.3). The fact that we use charge units as the central measure makes it

necessary to rephrase this criterion to be usable in the NTA model. If n is the total
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0
60 120 180 240 300 360 420

250

500

I
(m

A
)

0

t (s)

load time = [60, 120, 180, 240, 300, 360, 420, ...]

cur = [1, 0, 1, 0, 1, 0, 1, 0, ...]

cur times = [2, 0, 2, 0, 2, 0, 2, 0, 2, 0, ...]

Figure 5.4 Example load and the arrays describing it.

Var Type Description

id int unique number for each battery

n gamma array

the current total charge for each battery,

measured in charge units, initially N (cf. Sec-

tion 5.3.1)

m delta array
the current height difference for each battery,

measured in charge units, initially zero
load time array times when epoch ends (precomputed)

cur times array
times it takes to discharge one charge unit

(precomputed)

cur array
number of charge units consumed within

cur times (precomputed)

j int
current epoch, and thus index to arrays

load time, cur times, and cur

recov time array
times it takes to recover one charge unit (pre-

computed)

Table 5.1 Important variables.
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number of charge units left in the battery and m the height difference in number

of charge units at time t, then γ(t) = nΓ, δ(t) = mΓ/c, hence γ(t) = (1 − c)δ(t)

can be transformed to cn = (1− c)m. We change the equality sign to a less-than-

or-equal-to sign, to account for errors due to the discretization:

cn ≤ (1 − c)m. (5.6)

5.3.3 Basic battery model

The discharge and recovery behavior of the discretized KiBaM is modeled by two

timed automata, which are depicted in Figure 5.5. Figure 5.5(a) shows the total

charge automaton, Figure 5.5(b) the height difference automaton for battery id.

The total charge automaton keeps track of the level of the total charge in the

battery with number id (n gamma[id]). The automaton starts in location idle.

When the battery is used, signaled on channel go on, the automaton changes

state to location on and the clock c disch is reset. The global variable j (modified

in another component) is the current epoch, and is used as index to the arrays

load time, cur times, and cur. After cur times[j] time units, a number of cur[j] charge

units is subtracted from n gamma[id] and added to m delta[id]. Both cur times[j]

and cur[j] depend on the current which is discharging the battery.

The battery can be used until it is empty. In the total charge automaton this

is checked using the guard (1000 − c) ∗ m delta >= c ∗ n gamma, which is exactly

condition (5.6). When this inequality holds the battery is empty, and the total

charge automaton changes state to location empty. While all variables in Uppaal

Cora can only take integer values, the parameter c, which in the KiBaM lies be-

tween 0 and 1, is multiplied with 1000. This also is the reason the factor 1000

appears in the guard.

The height difference automaton keeps track of the height difference between

the two wells, m delta[id]. Initially, m delta[id] is zero. For every charge unit

drawn from the battery, m delta is increased with one unit. When m delta[id] > 1,

recovery starts and m delta[id] is decreased by the automaton. The time it takes to

recover one unit depends on m delta[id]. The times are precomputed, using (5.4)

and stored in the array recov times. Thus, after recov times[m delta[id]] time units,

m delta[id] is decreased by one unit. The clock c recov is used to check whether

the appropriate time has passed to recover a unit.

5.3.4 Battery scheduling

In the load automaton (Figure 5.6(a)) the array load time is used to determine

the start and end times of the different epochs in the load. The array cur is

used to determine whether an epoch contains a job (cur[j] > 0) or an idle period

(cur[j] = 0). When the epoch contains a job the load automaton will synchronize

with the scheduler automaton at the start of the epoch through the new job channel
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empty

on
c_disch<=cur_times[j]

idle

new_job!

c_disch>=cur_times[j]&&(1000-c)*m_delta[id]<c*n_gamma[id]
use_charge[id]!
n_gamma[id]-=cur[j],
c_disch=0

(1000-c)*m_delta[id]>=c*n_gamma[id]
emptied!
bat_empty[id] = true

(1000-c)*m_delta[id]<c*n_gamma[id]
go_off?

go_on?
c_disch=0

(a) total charge

off

m_delta_0

m_delta_1 m_delta_gt_1
c_recov<=recov_time[m_delta[id]]

c_recov>=recov_time[m_delta[id]]

m_delta[id]-=1,
c_recov=0

c_recov<recov_time[m_delta[id]]

use_charge[id]?
m_delta[id]+=cur[j]

all_empty?all_empty?

use_charge[id]?
m_delta[id]+=cur[j]

m_delta[id]>1
c_recov=0

m_delta[id]==1

m_delta[id]>2 &&  c_recov>=recov_time[m_delta[id]]
m_delta[id]-=1,
c_recov=0

m_delta[id]==2 && c_recov>=recov_time[m_delta[id]]
m_delta[id]-=1

use_charge[id]?
c_recov=0,
m_delta[id]+=cur[j]

(b) height difference

Figure 5.5 Timed automata modeling the KiBaM.
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off

load_on
t<=load_time[j]

start

cur[j]==0

t>=load_time[j]&&cur[j]==0
j+=1

all_empty?

cur[j]>0
new_job!

go_off!

t>=load_time[j]&&cur[j]>0
j+=1

new_job!

t=0,
j=0

(a) load

off

choosewait

all_empty?all_empty?

go_on!

new_job?

(b) scheduler

done

off c_cost<=charge_left&&
cost’==1

on

c_cost>=charge_left

all_empty!

empty_count==bat_num-1
emptied?

c_cost=0,
charge_left = sum_gamma()

empty_count<bat_num-1
emptied?

empty_count+=1

(c) maximum finder

Figure 5.6 Timed automata for battery scheduling.
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to schedule the next battery. At the end of the job the load automaton synchronizes

through the go off channel with the assigned battery to switch it off. These two

synchronizations are not needed for idle periods, since no battery is used. When

the load automaton synchronizes with the scheduler automaton (Figure 5.6(b))

through the new job channel, the scheduler will nondeterministically synchronize

through the go on channel with one of the batteries. When a battery is emptied

during a job, the scheduler chooses another battery to continue the job at the

point the other stopped. Although the battery can still recover some charge, we

assume it can not be used anymore once observed empty. The optimal schedule,

i.e., the one that yields the longest system lifetime, is the schedule that takes

the longest for both batteries to reach the location empty. We want the model

checker to find the longest path to this state. Unfortunately, Uppaal Cora is not

able to find the longest path leading to a target state. It is thus necessary to

translate the question for the longest path that leads to the maximum lifetime

into a question for a minimum cost trajectory. This has been done by adding the

maximum finder automaton (Figure 5.6(c)). When a battery is empty, the total

charge automaton will signal the maximum finder automaton on channel emptied.

The maximum finder automaton counts the number of empty batteries. When

all batteries are empty the maximum finder automaton broadcasts on the channel

all empty to stop all processes in the other automata. Now, the maximum finder

automaton converts the charge remaining in the bound-charge well of the batteries

into a cost. The path that will lead to the longest system lifetime will have used

the most charge from the batteries and therefore will have the smallest amount of

charge remaining in the bound-charge wells. In Table 5.2 all used synchronization

channels are listed to given an overview of the interactions between the different

automata.

We use thus Uppaal Cora to check the simple TCTL property

A[] not max.done. (5.7)

This property is not satisfied, and Uppaal Cora returns, with appropriately chosen

options, a path as a counterexample which minimizes the cost and maximizes the

system lifetime.

5.3.5 Complexity

The complexity of finding the optimal schedule clearly depends exponentially on

the number of scheduling decisions that have to be made, where the number of

batteries (B) is the base. At every scheduling point one can choose between all B

batteries. The number of scheduling points depends on the battery’s capacity and

the load applied.

Between the scheduling points the model is fully deterministic. The number

of states in between two scheduling points will depend on the granularity of the
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channel sending receiving action

automata automata

new job
load,

total charge
scheduler call the scheduler to make a scheduling decision when a new job

starts or a battery is empty

go on scheduler total charge switch the battery chosen by the scheduler to on

use charge total charge height difference increase the height difference with one unit for every charge unit

drawn from the battery

emptied total charge maximum finder add one to the number of batteries that are empty

all empty maximum finder
height difference,

load,

scheduler

stop all battery processes when all batteries are empty

Table 5.2 Overview of the synchronization channels used in the TA-KiBaM.
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5.4 Validation of the TA-KiBaM

test lifetime lifetime difference

load KiBaM TA-KiBaM %

(min) (min)

CL 250 4.53 4.56 0.7

CL 500 2.02 2.04 1.0

CL alt 2.58 2.60 0.8

ILs 250 10.80 10.84 0.4

ILs 500 4.30 4.32 0.5

ILs alt 4.80 4.82 0.4

ILs r1 4.72 4.74 0.4

ILs r2 4.72 4.74 0.4

ILℓ 250 21.86 21.88 0.1

ILℓ 500 6.53 6.56 0.5

Table 5.3 Battery lifetimes of battery B1 for the different loads computed with

both the analytical KiBaM and the discretized timed automata KiBaM.

discretization. The maximum number of state changes that can be made due to

discharging is N = C/Γ, when all charge units are drained one at a time. The

maximum number of state changes due to recovery is not so easy to define. How-

ever, it will be proportional to 1/∆. Since in the model, ∆ = Γ/c the maximum

number of states will be proportional to (1/Γ)2. The discretization of time will not

influence the maximum number of states, when the discretization of the charge

is not changed. The discretization of time is only used to define the guards and

the invariants in the model. Introducing smaller time steps will only increase the

numbers in the guards and invariants.

5.4 Validation of the TA-KiBaM

Before computing schedules with the TA-KiBaM, we need to check whether it

models the KiBaM correctly. To validate the TA-KiBaM, we compare the bat-

tery lifetimes computed with this model and with the original KiBaM. We con-

sider a single-battery case, and use two different battery types, one with capacity

5.5 Amin (Ampere-minute) (B1) and one with capacity 11 Amin (B2). The bat-

tery parameters are the same for both batteries: c = 0.166 and k′ = 0.122 min−1

[37], corresponding to the lithium-ion battery used in the Itsy pocket computer,

which was also simulated by Rakhmatov et al. [54, 55]. The time step size is set

to 0.01 min. The total charge is discretized in steps of size 0.01 Amin. This leads

to the discretization step size of the height difference of 0.01/c = 0.06 Amin .

The Itsy pocket computer operates with currents up to 700 mA. In the tests

we used two types of jobs, a low current job (250 mA) and a high current job
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(500 mA). With these jobs, ten different test loads have been created:

• three continuous loads (CL) with no idle periods between the jobs: one

load with only low current jobs (CL 250), one with only high current jobs

(CL 500), and one alternating between a low current job and a high current

job (CL alt).

• five intermittent loads with short idle periods of one minute between the jobs

(ILs) : one with only low current jobs (ILs 250), one with only high current

jobs (ILs 500), one alternating between a low current job and a high current

job (ILs alt), and two where the job is randomly chosen (ILs r1 and ILs r2)

• two intermittent loads with long idle periods of two minutes between the

jobs (ILℓ): one with only low current jobs (ILℓ 250) and one with only high

current jobs (ILℓ 500).

The results of the tests for the two battery types are given in Table 5.3 and 5.4.

For most loads the lifetime in the timed automaton battery model is only between

0.02 and 0.04 min longer for the analytical KiBaM. For the loads CL 250 and

CL alt TA-KiBaM gives a bigger difference for battery B2. This bigger difference

in computed lifetimes is due to the discretization of the height difference and the

time needed to recover one height unit. When a battery is discharged, the height

difference can grow up to the point that the time to increase the height difference

with one unit equals the time to decrease the height difference with one unit, i.e.,

cur times[x] = recov time[y]. The recov time is computed according to (5.4) and

rounded to the nearest number of time steps. The rounding causes the height

difference to grow less than it does in the analytical version of the model. The

amount of charge that is unavailable when the battery is empty is proportional to

the height difference, so the smaller height difference will give a longer lifetime.

The moment the height difference does not increase any more is only reached with

the loads CL 250 and CL alt applied to B2. In all other cases, either the battery

lifetime is too short for the height difference to reach this point, or the load has

idle periods in which the height difference will decrease. Note that even for the

loads with the bigger difference, the relative difference is still only 1%.

Although the discretized model sometimes gives small differences in lifetime

computation compared to the analytical model, we regard it perfectly usable for

attacking the scheduling problem.

5.5 Scheduling results

We use the multiple battery priced timed automaton model to find the optimal

way to schedule two batteries on the same test loads as used in Section 5.4. We

use batteries of type B1.
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test lifetime lifetime difference

load KiBaM TA-KiBaM %

(min) (min)

CL 250 12.16 12.28 1.0

CL 500 4.53 4.54 0.2

CL alt 6.45 6.52 1.1

ILs 250 44.78 44.80 0.04

ILs 500 10.80 10.84 0.4

ILs alt 16.93 16.94 0.1

ILs r1 22.71 22.74 0.1

ILs r2 14.81 14.84 0.2

ILℓ 250 84.90 84.92 0.02

ILℓ 500 21.86 21.88 0.1

Table 5.4 Battery lifetimes of battery B2 for the different loads computed with

both the analytical KiBaM and the discretized timed automata KiBaM.

Next to computing the maximum lifetime, we used the TA-KiBaM to compute

the lifetime using three deterministic scheduling schemes. Hence, we compare four

schedules:

• Sequential schedule. The batteries are used sequentially, i.e., the second

battery is only chosen when the first one is empty.

• Round robin schedule. For every new job a new battery is chosen. The

batteries are chosen in a fixed order.

• Best-of-two schedule. At the start of a job, the status of the batteries is

checked. The battery with the most charge in the available-charge well is

chosen to supply the charge for the job.

• TA-KiBaM schedule. The schedule computed using Uppaal Cora.

The computed lifetimes are given in Table 5.5, along with the relative difference

to the lifetime using the round robin scheduling. For the test loads, one can see

the order in performance of the different scheduling schemes. One can easily show,

using the Uppaal Cora model, that the sequential scheduling is actually the worst

possible way to schedule the batteries. For the test loads the round robin and

best-of-two scheme differ only in the cases of the alternating jobs. These cases

are clearly very bad for the round robin scheme, since the heavy load is always

put onto the same battery. This battery will be emptied very fast, and then only

one battery is left to handle the remaining load, leaving this battery with less idle

time to recover. The best-of-two scheme balances the load better over the two
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test sequential round robin best-of-two TA-KiBaM

load lifetime difference lifetime lifetime difference lifetime difference

(min) % (min) (min) % (min) %

CL 250 9.12 -21.4 11.6 11.6 0 12.04 3.79

CL 500 4.10 -9.5 4.53 4.53 0 4.58 1.1

CL alt 5.48 -10.2 6.10 6.12 0.3 6.48 6.2

ILs 250 22.80 -41.5 38.96 38.96 0 40.80 4.7

ILs 500 8.60 -17.9 10.48 10.48 0 10.48 0

ILs alt 12.38 -3.4 12.82 16.30 27.2 16.91 31.9

ILs r1 12.80 -21.28 16.26 16.26 0 20.52 26.2

ILs r2 12.24 -15.59 14.50 14.50 0 14.54 0.3

ILℓ 250 45.84 -39.7 76.00 76.00 0 78.96 3.9

ILℓ 500 12.94 -18.9 15.96 15.96 0 18.68 17.0

Table 5.5 System lifetime computed for all test loads according to the four

scheduling schemes. Next to the values of the lifetimes, the difference relative

to the round robin scheme are given.

batteries, which leads to a longer lifetime, especially in the ILs alt case. In the

other cases the best-of-two scheme behaves exactly like the round robin scheme.

Although the round robin and best-of-two schedulers perform close to optimal

in most cases, for some loads the schedules are far from optimal. The optimal

scheduler yields lifetime improvements up to 32%.

Besides the system lifetimes, the Uppaal Cora evaluation of the timed automata

battery model also provides the actual schedules which lead to these lifetimes, as

well as the evolution of the charge in the battery. Figure 5.7 shows the evolution

of the total and available charge in the two batteries (left y-axis) for both the best-

of-two scheduler (Figure 5.7(a) and the optimal scheduler (Figure 5.7(b)), in the

ILs alt case. In the figure, also the two schedules (right y-axis) are shown. When

a battery is chosen, one can see the total and available charge decrease due to the

load. The slope of the curves is proportional to the discharge current. When a

battery is not used, one can see the available charge rise again. This is due to the

recovery effect. Note that, when the batteries are empty, still a relatively large

amount of charge remains in the battery (approximately 3.9 Amin).

Due to the complexity of finding the optimal schedule, it is possible to model

only a limited total battery capacity. The used discharge currents are relatively

high for the battery’s capacity, and will drain the available-charge well fast. There-

fore, there will be little time for the bound charge to become available, and a large

fraction will remain unused. When the battery capacity is increased this fraction

will be smaller. Using the deterministic scheduling scheme, we can compute the

results for larger capacities. For example, with a ten times larger capacity, the

fraction of charge left behind in the batteries will be less than 10% in the case of

best-of-two scheduling.

When we look at the two schedules in Figure 5.7, we see that the best-of-two
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Figure 5.7 The schedules and the total and available charge in the batteries for

the best-of-two (a) and the optimal (b) schedule for the ILs alt load.
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scheduler mean lifetime (min) variance (min2)

sequential 19.72 2.39

round-robin 30.31 10.06

best-of-two 31.11 9.50

TA-KiBaM 33.52 8.73

Table 5.6 Mean and variance of the lifetimes obtained with the different sched-

ulers for the loads with random on-times.

schedule acts like a round robin scheduler that switches batteries after the high

current jobs. The optimal schedule seems to behave randomly, no direct relation

between the state of the batteries and the schedule can be made. The optimal

schedule does depend strongly on the size of the batteries and their parameters,

as well as on the load that is applied.

5.6 Towards random loads

The test loads presented in the previous section are very regular. The discharge

current switches after fixed time periods. However, most realistic loads are not

regular and have discharge and idle periods of random length. In this section we

introduce some randomness into the loads.

As a first step towards more realistic loads we introduce discharge periods of

random length. The load profile we use is still an on-off load, where the discharge

current switches between 250 mA and 0 mA. All off-periods last one minute.

However, the lengths of the on-periods are chosen from a uniform distribution on
[

1
2 , 3

2

]
min. The scheduling decision is made at the start of each on-period. To see

how the different scheduling schemes perform for this random load, 500 load traces

have been generated. The TA-KiBaM scheduler is used to compute the optimal

schedule for a system with two batteries separately for every trace. Also, for

each of these traces the system lifetime under the three deterministic scheduling

schemes has been computed. The battery capacity in these computations was

set to 5 Amin for each battery. Since the loads are random, the result is now

an empirical distribution. The empirical distributions are shown in Figure 5.8.

The mean and variance of the distributions are given in Table 5.7. Like with

the test loads, the sequential scheduler results in much shorter lifetimes than the

other schedulers, and is far from optimal. On average the TA-KiBaM scheduler

outperforms the sequential scheduling scheme by 70%. The results of the round

robin scheduler and the best-of-two scheduler lie close to each other, although the

latter performs slightly better. The schedules of TA-KiBaM outperform round

robin and best-of-two by 10% and 8%, respectively.

In a second set of random loads, we keep the duration of the discharge periods
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Figure 5.8 Empirical lifetime distributions of the four scheduling schemes for

500 random loads with random on-times.

constant, but we randomly choose the discharge current. As in the test loads, the

periods of constant current last one minute. Every minute we uniformly choose

the discharge current from the set 0, 100, 200, 300, 400 500 mA. Again, 500 load

traces have been generated, and for each of these traces the system lifetime under

the different schedulers has been computed.

The results of these computations are give in Figure 5.9 and Table 5.7. For

this set of loads the system lifetimes under the different schedulers lie much closer

to each other. Still the same order of performance of the schedulers can be ob-

served. The average load in this set of load traces is twice as high as for the loads

with random on-times. This results in shorter system lifetimes, and thus in less

scheduling moments. Therefore the schedulers have less opportunities to balance

the load over the batteries and, therefore, have less opportunities to improve the

system lifetime.
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Figure 5.9 Empirical lifetime distributions of the four scheduling schemes for

500 random loads with random discharge current.

scheduler mean lifetime (min) variance (min2)

sequential 9.17 6.11

round-robin 10.08 10.32

best-of-two 11.02 11.35

TA-KiBaM 11.61 13.37

Table 5.7 Mean and variance of the lifetimes obtained with the different sched-

ulers for the loads with random discharge currents.
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5.7 Conclusions

We have shown a new approach to maximize the system lifetime through battery

scheduling. The priced timed automaton battery model allows us to compute the

optimal way to schedule multiple batteries for a given load. The optimal sched-

ule and lifetime can easily be compared to straightforward scheduling schemes,

like round robin. For most of the tested loads the round robin and best-of-two

schedulers perform close to optimal. However, the optimal schedules determined

by model checking reveal that there still is room for improvement.

The random loads are analyzed using a large set of randomly generated traces,

and computing the optimal schedule for each trace separately. This results in

a large set of schedules, which needs to be analyzed in order to find a general

scheduling strategy for the random workload. So far, this has not led to any clear

insights. To be able to include the actual random workload into the priced timed

automata model and generate an optimal scheduling scheme for the workload at

once, one needs probabilistic priced timed automata. For this, algorithms and a

tool are in development [8, 9].

The optimal scheduler is not something one can use in real life systems, since

complete knowledge of the future load is needed. Also, the computational com-

plexity of the approach limits the number of scheduling points. Therefore, the

computation of optimal schedules is limited to batteries with a small capacity.

Also, computing schedules for systems with more than two batteries is not prac-

tically feasible. In the next chapter we will take another, analytic approach to

the battery scheduling problem, to overcome the limitations of the priced-timed

automata model.
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Chapter 6

An analytic and simulation

approach to battery

scheduling

The computations of optimal schedules with the linear priced timed automata

approach described in the previous chapter are limited to small batteries and a

maximum of two batteries. In this chapter we will take another, analytic ap-

proach to the scheduling problem that also gives a solution for large batteries and

arbitrarily many batteries.

Section 6.1 presents the analytic approach to the scheduling problem; it derives

a formula to compute the maximum possible lifetime gain one can obtain theo-

retically by battery scheduling. In Section 6.2 a new scheduler, named the greedy

scheduler, is used to approach the maximum possible lifetime. In Section 6.3, we

compare the maximum lifetime gain with the one obtained by parallel discharge.

In Section 6.4, we apply different battery schedulers to random loads for a system

of two batteries with realistic capacity. Section 6.5 concludes this chapter.

6.1 Nonuniform scheduler generation

The linear priced timed automata approach described in Chapter 5 was based on

the assumption that a scheduling decision must be made at predefined points in

time. Even with this restriction, schedule generation for realistic battery capaci-

ties is not feasible because the time needed to assess all possible schedules grows

exponentially when the number of scheduling points is increased. Due to the com-

putational complexity, also systems with more than two batteries are infeasible to

analyse.
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In this chapter we investigate a slightly more general scheduling problem, which

differs in two points. First, the question is not only to choose the optimal among

available batteries, but also when to do this. Second, a battery can be reused after

its available charge well has been completely drained and some recovery period af-

terwards. The chosen approach to tackle this scheduling problem is analytic. This

approach does supply a solution for both realistic battery capacity and systems

with more than two batteries.

We consider a system with M identical batteries with KiBaM parameters c, k,

and C. For this system we define a switching mechanism consisting of a collection

of M functions
[
u(1), . . . , u(M)

]
with u(j)(t) : R>0 → {0, 1}, j ∈ {1, . . . , M}.

u(j)(t) = 1 iff battery j is selected at time t. Note that, since always a battery is

selected at any time t,
∑M

j=1 u(j)(t) = 1, for t ≥ 0.

When a battery is selected, a charge is drawn from it with current i(t). Given

the switching mechanism
[
u(1), . . . , u(M)

]
, the available and bound charges of all

M batteries can be expressed using the system of ODEs in Equation (2.4):







dy
(j)
1 (t)
dt

= −i (t)u(j)(t) + k
(

h
(j)
2 (t) − h

(j)
1 (t)

)

,

dy
(j)
2 (t)
dt = −k

(

h
(j)
2 (t) − h

(j)
1 (t)

)

,

j = 1, . . . , M (6.1)

where y
(j)
1 is the available charge and y

(j)
2 is the bound charge in battery j. Here

we take again the initial conditions y
(j)
1 (0) = c · C and y

(j)
2 (0) = (1−c) · C, where

C is the total initial battery charge. Similar as before, h
(j)
1 (t) =

y
(j)
1 (t)

c
and

h
(j)
2 (t) =

y
(j)
2 (t)

1−c
.

The available charge of all the batteries may never be smaller than 0. This

gives the following set of set of boundary conditions:

y
(j)
1 (t) ≥ 0, ∀t ≥ 0, j = 1, . . . , M. (6.2)

Example 1 Figure 6.1 depicts the available charge of two batteries, where the

switching functions u(1)(t) := u(t) and u(2)(t) := 1 − u(t) are defined in terms of

the piecewise constant control function u (upperpart of Figure 6.1. Note that in

the interval of time [t0, t1), the first battery is selected and therefore its available

charge decreases, while the available charge of the second battery remains constant.

When in the interval of time [t1, t2) the second battery is selected, the available

charge y
(2)
1 (t) decreases, while y

(1)
1 (t) increases due to the recovery effect.

For a system with M identical batteries with parameters k, c and capac-

ity C, and a switching mechanism
[
u(1), . . . , u(M)

]
, the total available charge is

ŷ1(t) =
∑M

j=1 y
(j)
1 (t) and total bound charge ŷ2(t) =

∑M

j=1 y
(j)
2 (t) at time t is
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t1 t2 t3 t4 t5t0

time

y
(1)
1 (t)

y
(2)
1 (t)

u(t)

Figure 6.1 Control function u(t) and the available charges y
(1)
1 (t) and y

(2)
1 (t).

given by the following system of ODEs:






dŷ1(t)
dt

= −i (t) + k(ĥ2(t) − ĥ1(t)),

dŷ2(t)
dt

= −k(ĥ2(t) − ĥ1(t)),

(6.3)

where ĥ1(t) = ŷ1(t)
c

, ĥ2(t) = ŷ2(t)
1−c

and the initial conditions are ŷ1(0) = M · c · C
and ŷ2(0) = M · (1−c) · C. This system of ODEs is obtained by adding up the

Equations (6.1), and using the fact that
∑M

j=1 u(j)(t) = 1 for all t ≥ 0.

Equation (6.3) shows that the total remaining available charge of M batter-

ies at any time t is equal to the total charge of a single battery B̂ with initial

capacity M ·C, and parameters k and c. More remarkable is the fact that the

total remaining available charge of all M batteries does not depend on the control

functions
[
u(1), . . . , u(M)

]
. This does not imply that the control functions do not

influence the system lifetime. For all the separate batteries the boundary condi-

tions in Equation (6.2) still need to hold. However, when we relax the boundary

conditions such that only the total available charge may not be smaller than 0,

ŷ1 ≥ 0, we can use the system of ODEs in Equation (6.3) to compute an upper

bound for the system lifetime.
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For a constant load function i(t) = L with L > 0, the solution to Equation (6.3)

can be derived as






ŷ1(t) = −cLt + cMC − L(1−c)
k′

(

1 − e−k′t
)

,

ŷ2(t) = −(1−c)Lt + (1−c)MC + L(1−c)
k′

(

1 − e−k′t
)

,
(6.4)

where k′ = k/(c(1−c)). The maximum total lifetime for a system with M batteries,

tf,M , can be expressed analytically as follows:

tf,M =
MC

L
− 1

k′

(
1 − c

c
− W

(
1−c

c
e−

MCk′

L
+ 1−c

c

))

(6.5)

where W is the Lambert W function. The Lambert W function is the inverse

function of f(x) = xex [69].

Using Equation (6.5) we can compute the maximum possible gain one can

obtain by applying battery scheduling in the case of a constant discharge current.

For a single battery discharged with a constant current the lifetime ts is given by:

ts =
C

L
− 1

k′

(
1 − c

c
− W

(
1 − c

c
e−

Ck′

L
+ 1−c

c

))

, (6.6)

The system lifetime when using M batteries sequentially will be Mts, hence the

maximum possible gain with M batteries GM is given:

GM =
tf,M

Mts
. (6.7)

In Figure 6.2 the gain for a system with 2 batteries (G2) is given as a function

of the discharge current. The batteries that have been used in this computation

are similar to those used in Chapter 5, i.e., c = 0.166 and k = 2.03 · 10−4 s−1.

However, here the capacity is increased to a realistic value, C = 2400 As. The

discharge current has been varied between 0.1 A and 10 A. For this system of

batteries the highest gain is obtained at a discharge current of approximately

0.85 A, where the gain is more than 1.9. The peak can be explained as follows.

When the discharge current gets too high, the available-charge well will be depleted

too fast and the slow recovery process will hardly increase the usable capacity,

even when scheduling is applied. At low discharge currents the loss of capacity

due to the rate capacity effect is low, i.e., the flow of charge from the bound to

the available charge well can keep up with the demand, and little charge will be

left behind in the bound-charge well. Therefore, the gain of allowing batteries to

recover by the scheduling is limited. However, at a discharge current of 0.1 A the

gain still is approximately 1.05, and a 5% lifetime extension is still a considerable

improvement.

When we look at Equation (6.5) and Equation (6.6) we see that the discharge

current L always appears in direct relation with the battery capacity C, in the
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Figure 6.2 The maximum lifetime gain for a system with two batteries as a

function of the constant discharge current. Note that the current is plotted in a

logarithmic scale. The top x-axis gives the current normalized to the capacity of

one battery.
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form C
L

. This implies that when the battery capacity is halved, and the other

battery parameters stay the same, the discharge current needs to be halved as

well to obtain the same lifetime gain. Using the top x-axis Figure 6.2 shows how

the maximum lifetime gain depends on the current normalized to the capacity of

one battery (L/C).

6.2 Greedy scheduler

6.2.1 Introduction

As stated before, Equation (6.3) shows that the sum of the available charge in

all the batteries does not depend on the switching mechanism. However, one still

needs to take into account that for all batteries, y
(j)
1 (t) ≥ 0 must hold at all time.

In the previous section we used the condition ŷ1(tf ) = 0 to compute the maximum

lifetime tf . This condition implies that for each individual battery j, y
(j)
1 (tf ) = 0,

i.e., the available-charge well of the M batteries must all be empty at this precise

point in time. However, for all switching mechanisms at any time t, only one

battery is used. While this battery is used, the others may recover. When for the

used battery the available charge well is emptied, one can switch to one of the

other batteries that just recovered some charge and use this until it is empty. This

leaves some time for the first battery to recover again. Since the recovery process

is slow, and becomes even slower when also the bound-charge well is emptied,

the time points at which one has to switch get closer to each other as the time

approaches tf , until the point that the switching will have to be infinitely fast.

This actually means that, when one allows for the once-emptied batteries to be

reused after they recovered some charge, the switching mechanism does not impact

the system lifetime as long as fast switching is possible when the maximum possible

lifetime is reached.

6.2.2 Constant load

To investigate how fast the switching needs to be to get close to the maximum

lifetime we define a new simple scheduler, termed the greedy scheduler. This

scheduler only switches to the next battery when the available-charge well of the

currently used battery is emptied. When all the batteries have been used once,

the first, which had the most time to recover, is picked again.

We have applied this greedy scheduler to two constant loads, of 0.5 A and 1 A.

Like before, we consider a system with two batteries with a capacity of 2400 As

each, and the KiBaM parameters c = 0.166 and k = 2.03 · 10−4 s−1.

Figure 6.3 shows the dependence of the system lifetime as a function of the

number of times the greedy scheduler switches between the batteries. We clearly
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Figure 6.3 Dependency of the total lifetime regarding the number of switches

using the greedy scheduler for two constant load functions and two batteries. The

maximum possible lifetimes for the loads are indicated with the dashed lines (top:

0.5 A case, bottom: 1 A case).

see that the total lifetime asymptotically approaches a constant value, which is

actually the optimal lifetime tf , indicated by the dashed lines.

To see how fast the lifetime of the greedy scheduler approaches tf , Figure 6.4

shows the difference between the two lifetimes as a function of the number of

switches. We see that the difference decreases exponentially when the number of

switches is increased. For both loads the difference is less than one second for only

25 times switching between the batteries. This is well below 0.1% of the total

lifetime.

Figure 6.5 gives the lifetime that is added for every extra switching point. From

this figure one can obtain an indication of how fast the scheduler needs to be in

order to retrieve the extra charge from the batteries when the batteries are nearly

empty. Switching at 1 Hertz will be sufficient to get within two seconds of the

maximum possible lifetime.

6.2.3 Greedy scheduler results

The system lifetime for the test loads introduced in Chapter 5 has also been

computed using the greedy scheduler. The results are given in Table 6.1. For

most of the test loads the results are close to the lifetimes obtained by the TA-
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obtained with the greedy scheduler as a function of the number of switches.
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greedy scheduler for two constant load functions and two batteries.
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test GS algorithm TA-KiBaM

load lifetime lifetime

(min) (min)

CL 250 12.16 12.04

CL 500 4.53 4.58

CL alt 6.45 6.48

ILs 250 44.77 40.80

ILs 500 10.80 10.48

ILs alt 16.93 16.91

ILℓ 250 84.90 78.96

ILℓ 500 21.86 18.68

Table 6.1 System lifetime for the test loads using the greedy schedules and the

TA-KiBaM schedules. For the highlighted loads the greedy schedule leads to a

significantly longer lifetime.

KiBaM scheduler. However, for three of the loads, highlighted in gray in the table,

the schedules obtained from the greedy scheduler result in a significantly longer

lifetime. This difference is due to the fact that the TA-KiBaM scheduler can only

switch batteries at fixed predefined points in time, whereas in the greedy schedule

batteries may be switched at any time. The limitation in switching options may

result in one of the batteries being emptied sooner, and thus giving a shorter

system lifetime.

For the two loads CL 500 and CL alt the lifetime for the TA-KiBaM seems

to be slightly longer than for the greedy scheduler. This is caused by the small

overestimation of the system lifetime by the TA-KiBaM, as was observed in Sec-

tion 5.4. Taking this overestimation into account, the two schedulers result in

approximately the same lifetime.

Besides that the schedules of the greedy scheduler often lead to longer lifetimes,

the greedy scheduler has one major benefit compared to the TA-KiBaM. Where

the TA-KiBaM cannot handle batteries with large capacity due to the exponen-

tial growth of the state space, the greedy scheduler can easily cope with larger

batteries.

6.3 Parallel discharge

When we compare Equation (6.5) with the solution for the lifetime of a single

battery, Equation (6.6), we see that the maximum lifetime of the M battery system

is the same as the lifetime of a single battery that is discharged with an L/M

current. This implies that discharging the M batteries in parallel, where the

discharge current of every battery is equal to L/M , leads to the maximum possible
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lifetime of the system.

However, the possibility of connecting batteries directly in parallel is under

debate. Where [3] claims lithium batteries are well suited to connect in parallel,

[41] says one should not do this. One problem of connecting batteries in parallel

is that even for two batteries of the same type a difference in potential can occur.

When this happens a current will flow between the batteries, resulting in a loss of

capacity and possibly damage to the batteries. Using batteries in parallel requires

extra electronic circuitry, which consumes some power and decreases efficiency.

Also, in some situations, like the routing problem described in the Section 5.1,

parallel usage is simply impossible. Using a simple scheduling scheme, like greedy

scheduling or round robin scheduling, one can circumvent the problems of parallel

usage, and still obtain an improvement in system lifetime.

6.4 Random load scheduling

So far, we have applied our scheduling algorithms to simple regular loads. However,

realistic loads are not that regular. In the previous chapter we presented a first

step towards random loads with the priced timed automata model. However,

the priced timed automata approach is limited to small batteries. The analytic

approach presented in this chapter allows us to increase the battery capacity to

a realistic size. In this section we introduce randomness into the loads in three

steps. The first two are the same as presented in Section 5.6, these are used for

comparison reasons, to see the effect of the capacity increase on the lifetime gain.

In the third step, a fully random load, modeled by a continuous-time Markov

chain, is used.

The approach presented in Chapter 4 of combining the KiBaM with a stochastic

workload into the MRKiBaM is not feasible for the battery scheduling problem.

The state space will grow exponentially with the number of batteries. Together

with the addition of the scheduler, this would make the model too complex to deal

with. Therefore, in this section we use simulations to obtain the scheduling results

for random loads.

6.4.1 Simulation set-up

Like in the previous chapter, the batteries we model are the lithium-ion batteries

that are used in the Itsy pocket computer. However, now the modeled battery has

a capacity of 2400 As, which is the size used in the pocket computer. The KiBaM

parameters for this battery are the same as in the previous chapter: c = 0.166 and

k = 2.03 · 10−4 s−1. In the analysis we use four basic scheduling schemes:

• sequential :, a next battery is chosen when the current one is empty.
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• load-round-robin:, the batteries are chosen in a fixed order, a switch between

batteries takes place at the moment the discharge current is changed to

another positive current.

• best-of-two:, at the moment the load changes the battery with the most

charge in the available-charge well is chosen.

• time-round-robin:, the batteries are chosen in a fixed order, a switch between

batteries takes place after a fixed amount of time has passed.

In Chapter 5 we used three of these schedulers in the setting of priced timed

automata: sequential, load-round-robin and best-of-two. These schedulers are

used here to see what the effect is of the bigger battery capacity on the lifetime

gain.

Before, we showed that when there are no restrictions on the moments of

switching between batteries the actual scheduling scheme is not important, as long

as one can switch fast enough when the batteries are nearly empty. Therefore, we

use a fast switching round robin scheduler, that switches at fixed points in time.

This scheduler is much easier to implement in practice than the greedy scheduler

presented in Section 6.2, since for the round robin scheduler one does not need

to monitor the battery status to be able to switch in time. Of course, the round

robin scheduler will have to switch more often and at a much higher rate than the

greedy scheduler, which will cost some extra energy. However, the energy needed

to switch between batteries will be negligible compared to the actual load. In [46],

Matsuura presents a low-power pulse generator which operates with a discharge

current of 0.15 µA at a voltage of 1.5 V. This current is at least a factor 1000

less than the discharge current the device operates at, which is in the order of

mA. Therefore, the cost of switching using the fast round-robin scheduler can

be neglected without introducing any significant error to the computed system

lifetime.

6.4.2 Round robin frequency dependence

In order to find what switching frequency is efficient to approach the maximum

lifetime, we investigate how the gain in lifetime depends on the switching frequency

in case of round robin scheduling. The system of two batteries is discharged with a

constant current of 1 A. We compare the system lifetime obtained with the round

robin scheduler with that of sequential battery usage.

In Figure 6.6, we show the ratio of the system lifetime using round robin

scheduling to the lifetime with sequential scheduling as a function of the round

robin switching frequency. We see that the gain in lifetime of using the scheduler

grows to a level of 1.89 when the switching frequency is increased. This level is the

gain one would get with parallel discharge, which can be seen as switching with
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Figure 6.6 Gain of using a round robin scheduler compared to sequential usage

as a function of the switching frequency.

infinite frequency. The figure shows that already for a switching frequency of 1 Hz

the gain is close to optimal, so switching at higher frequencies is not necessary.

On the side of the low frequencies, smaller than 0.1 Hz, the graph fluctuates

with clear downward tendency, that is, a small increase of the switching frequency

may result in a considerable change in lifetime. This can be explained as follows.

At very low frequency, lower than 0.008 Hz, the batteries are emptied in one period

and the round robin scheduler results in sequential usage. When the frequency

is increased the point will be reached where the first battery will not be emptied

completely before the switch takes place. While the second battery is used the

first can recover. Due to this recovery time the battery can be used longer, and

the system lifetime is increased. This results in the first jump in the graph. Every

time the batteries can recover for one period more a next jump in the graph

occurs. The size of the jumps decreases as the frequency increases, since the extra

recovery time will be shorter at higher frequencies. Between the jumps the system

battery lifetime decreases, since the extra recovery time decreases as the switching

frequency is increased. Thus, the ratio between on and off time will decrease until

the next jump occurs.

.
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Figure 6.7 Empirical lifetime distributions generated with 10000 on-off loads

with random on-times.

6.4.3 Random times

As first random load, we take an on-off load with 250 mA on-current. The off

periods last 1 minute, and the on periods are uniformly distributed over the interval
[
1
2 , 3

2

]
minute. This load has also been used in Section 5.6, but there the modelled

batteries had a capacity that was approximately 8 times smaller than the real

capacity, which is used here.

We compute the system lifetime for 10000 randomly generated loads using the

four schedulers mentioned in Section 6.4.1. In Figure 6.7 the empirical lifetime dis-

tributions according to the different schedulers is given. For clarity the histograms

are plotted using lines. In Table 6.2 the mean and variance of the computed life-

scheduler mean lifetime (min) variance (min2)

sequential 552.87 39.36

load-round-robin 585.90 50.39

best-of-two 589.33 37.44

time-round-robin 596.01 33.38

Table 6.2 Mean and variance of the lifetimes obtained with the different sched-

ulers for the loads with random on-times.
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scheduler mean lifetime (min) variance (min2)

sequential 229.55 237.98

load-round-robin 266.12 206.73

best-of-two 270.10 195.44

time-round-robin 274.84 197.20

Table 6.3 Mean and variance of the lifetimes obtained with the different sched-

ulers for the loads with random discharge currents.

times are given for the different schedulers. As can be observed, clear system

lifetime improvement is obtained when battery scheduling is applied. On average

the load-round-robin and best-of-two scheduler outperform sequential usage by 6%

and 6.6% respectively. Also, the two schedulers perform only slightly worse than

the time-round-robin scheduler.

When we compare these results with those in Chapter 5, in which a gain of

65% was observed, we see that the relative gain in lifetime obtained by battery

scheduling is much less than for smaller batteries. This is related to the result

in Section 6.1, where the maximum possible gain is given as a function of the

discharge current, as follows. The mean of the discharge current of the used

loads is 125 mA. This gives a ratio between the load and the battery capacity of

0.125 A/0.666 Ah = 0.1875 h−1 for the real size battery. For the smaller battery

used in Chapter 5 the ratio is 0.125 A/0.0916 Ah = 1.36 h−1. Using the top

x-axis in Figure 6.2 one sees that the ratio of 0.1875 h−1 allows for a gain of less

than 10%, whereas the ratio of 1.36 h−1 is close to the peak value of a maximum

possible gain of 90%.

6.4.4 Random currents

The second set of random loads is also used in Chapter 5. In this set of ran-

dom loads every minute we uniformly choose the discharge current from the set

{0, 100, 200, 300, 400, 500} mA. The current will stay constant for one minute until

the next current is picked. We use the same schedulers as in the previous section.

The load-round-robin and best-of-two scheduler now make a scheduling decision

every minute, when the new current is picked.

Again, 10000 loads were generated. The lifetime distributions for these loads

are given in Figure 6.8, and the numbers for the mean and variance of the simula-

tions are given in Table 6.3. The trend is similar to the previous random load. The

best-of-two scheduler performs slightly better than the load-round-robin scheduler,

and both perform close to the time-round-robin scheduler. The average improve-

ments relative to the sequential scheduler are 16% and 18% for the load-round-

robin and best-of-two, respectively. This is much better than for the loads with
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Figure 6.8 Empirical lifetime distributions generated with 10000 loads with ran-

dom discharge current.

random on times due to the higher average discharge current. For the loads with

random currents the average discharge current is 250 mA. In Figure 6.2 we can see

that for a discharge current of 250 mA the maximum lifetime gain is just under

20% when the system is discharged with a continuous current of 250 mA. On the

other hand, the maximum gain for the random on-times, which have an average

discharge current of 125 mA, is approximately 10%.

Due to the higher variance in discharge current, the variance in lifetime is

larger for this load, as visible through the “wider” graphs, and the numbers for

the variance in Table 6.2 and 6.3.

When we compare the results with those of Chapter 5, we see that the differ-

ence in lifetime gain is not as large as with the previous set of random loads. The

TA-KiBaM schedule resulted in a system lifetime that was 26% longer than the

sequential schedule. For the smaller batteries used in Chapter 5, the ratio between

the discharge current and the battery capacity is 0.250 A/0.0916 Ah = 2.73 h−1.

This ratio leads, according to Figure 6.2, to a maximum possible gain of approxi-

mately 26%, which is obtained by the TA-KiBaM scheduler.
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Figure 6.9 State transition diagram of the workload model.

transition λ σ µ1 ν1 µ2 ν2 τ

rate (min−1) 1
5 2 1

14
1
14

1
25

4
25

1
2

Table 6.4 Transition rates of the Markov model.

6.4.5 Full random load

The final step in introducing randomness into the loads is having both random

discharge times and random currents. This is done by using a Markov model that

represents a simple workload of a device. The state transition diagram of this

Markov model is given in Figure 6.9. The device has 5 different states: sleep,

start-up, on-1, on-2 and idle. In the sleep state the device draws a 2 mA

current from the battery. From the sleep state the device first has to start-up

before it can go to the on-1 state. The start-up takes 30 seconds on average, and

during start-up the discharge rate is 300 mA. From the on-1 state a transition is

made either to the idle state, or to the on-2 state, both with probability 1
2 . In the

on-1 and on-2 state the discharge current is 400 and 600 mA, respectively. The

average residence time in the on-1 and on-2 state is 7 and 6 minutes, respectively.

From the on-2 with probability 4
5 it will go back to on-1, and with probability 1

5

go to idle. In the idle state the current is 20 mA, and the average time it takes

to go back to sleep is 2 minutes. The used discharge currents are based on the

average discharge currents for different modes of the Itsy pocket computer [55].

An overview of the transition rates is given in Table 6.4.

Again, we use the sequential, load-round-robin, best-of-two scheduler and time-

round-robin to compute the system lifetime for 10000 randomly generated loads.

The scheduling choices are made at the state changes.

In Figure 6.10 the empirical lifetime distributions for the Markov workload

model are given. In Table 6.5 the mean and variance of the lifetimes are given.

Again, we see the same order in performance of the four schedulers. However,

the difference between the time-round-robin scheduler, and the best-of-two and

load-round-robin scheduler is a lot larger. Even though the average improvement
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Figure 6.10 Empirical lifetime distributions generated with 10000 Markov model

loads.

scheduler mean lifetime (min) variance (min2)

sequential 133.72 794.12

load-round-robin 145.99 803.83

best-of-two 149.11 892.97

time-round-robin 183.61 775.06

Table 6.5 Mean and variance of the lifetimes obtained with the different sched-

ulers for the Markov model loads.
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compared to sequential discharge of the load-round-robin and best-of-two scheduler

is 10.3% and 12.6%, respectively, the time-round-robin scheduler leads to an even

longer lifetime. The time-round-robin scheduler outperforms sequential scheduling

with 40.6% for this workload. The large difference between the time-round-robin

scheduling and the round robin and best-of-two schedulers is caused by the longer

average time between scheduling moments.

6.5 Discussion

In this chapter we show an analytic approach to the battery scheduling problem.

This approach shows that when the moments of scheduling can be chosen freely,

and the empty batteries that had time to recover some charge can still be used,

the actual scheduling mechanism does not matter for the system lifetime, as long

as one can switch fast enough between the batteries.

The analytic approach gives an easy way to compute the maximum possible

lifetime gain one may obtain by battery scheduling in the case of continuous cur-

rents. This result can be used to get an indication for the potential lifetime gain

for any load profile based on the average discharge current. This maximum gain

clearly depends on the level of the discharge current. The optimal current, i.e.,

where scheduling will lead to the largest lifetime improvements, depends, next to

the battery parameters, on the ratio between the discharge current and battery

capacity.

The benefit of the analytic approach over the priced timed automata model of

Chapter 5 is that it can also be used for systems with larger and more batteries,

where the priced timed automata approach falls short for scalability reasons. How-

ever, it is important to note that the analytical results obtained in this chapter

only hold for the case that the batteries have the same KiBaM parameters k and

c. In the case that batteries with different parameters are considered, as is done

for example in [70], the addition of the differential equations to obtain Equation

(6.3) is not possible. The priced-timed automata, on the other hand, can easily

be adapted to model combinations of different types of batteries.

Finally, the simulation results show that also for more complex random loads,

battery scheduling helps to improve the system lifetime considerably. The gain in

lifetime compared to sequential discharge of the batteries for the different sched-

ulers varies with the type of load. The average maximum lifetime gain can be

predicted well by computing the maximum possible lifetime gain for a continuous

discharge current using the average current of the random load.
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Chapter 7

Concluding remarks

For the wireless devices used in modern society, a long lasting battery is essential.

The nonlinear properties of batteries, the rate-capacity and recovery effect, suggest

that battery lifetime can not only be extended by lowering the average discharge

current, but also by changing how the load is distributed over time. In this thesis

we investigated the influence of the workload on the battery lifetime by combining

a battery model with different workload models in various ways.

The literature provides many different approaches to model batteries for do-

ing lifetime predictions. We have provided an overview of the most important

approaches that have been taken. Most of these models have been developed to

be used in a specific application area. For example, the highly detailed electro-

chemical models are used in battery development, and the electrical circuit models

are used in electrical engineering. These specialized models focus on the properties

of interest of their users. This makes them overly complex, and hard to combine

with workload models.

Other models focus on only one of the non-linear properties. On the one

hand, Peukert’s law only models the rate-capacity effect. For this model only

the average load has an impact on the battery lifetime. On the other hand, the

stochastic model by Chiasserini focuses on the recovery effect, ignoring the rate-

capacity effect. These models are too limited, since they fail to take into account

an essential part of the battery behavior.

The analytical diffusion model and kinetic battery model are best suited to be

used in combination with workload models. These models focus on the externally

visible battery properties, rate-capacity and recovery effect, and are based on only

two differential equations, which still makes the combined model manageable.

We have shown that the two analytical models are closely related, the kinetic

battery model being a first order approximation of the diffusion model. The de-

tailed analysis of the analytic battery models in Chapter 3 shows that the frequency

response of the battery is very low for frequencies higher than 10−2 Hz. There-
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fore, rearranging the load on a sub-minute time scale will not impact the lifetime.

The processes in the battery are too slow to keep up with the changing current.

This means that the battery will only “see” the average current. Only when the

average current is lowered by the sub-minute load change the battery lifetime will

be extended. However, by rearranging the load on a coarser time scale one may

take advantage of the recovery effect and improve the lifetime even if the average

load does not change.

The comparison between the two analytical models shows that these are closely

related. The kinetic battery model is a first-order approximation of the diffusion

model. By properly choosing the parameters of the kinetic battery model a good

approximation can be made of the diffusion model, which leads to similar computed

battery lifetimes for realistic loads. Therefore, we chose to use the simpler kinetic

battery model to model the battery.

We have used the kinetic battery model in combination with other models

to investigate the impact of the workload on the battery lifetime. In Chapter 4

we have combined a stochastic workload, modeled by a continuous-time Markov

chain, with the battery model. This results in an inhomogeneous Markov reward

model with two rewards, in which the reward rates depend on the levels of the

accumulated rewards. For this model we have developed new algorithms to com-

pute the distribution and the expected value of both the battery lifetime and the

charge delivered by the battery.

The accuracy of the algorithms for computing the distributions varies with the

applied load. It is rather poor in the case that the battery lifetime is nearly deter-

ministic. In contrast, the algorithms give good results in the case that the lifetime

has a high variance. More work is necessary to investigate the exact conditions

under which the used approximation leads to accurate results. Indeed, we see

that the distributions and expected value of the battery lifetime is influenced by

the workload, and the battery lifetime does not depend only on the average cur-

rent. However, we also have seen some contradicting results, where the workload

that leads to the longer average lifetime also leads to less charge delivered by the

battery.

For systems with one battery, the workload pattern is not so easily influenced,

especially when the workload is highly dependent on the users behavior. The

change of workload should not influence the system performance perceived by the

user, which limits the options to delay tasks in order to improve battery lifetime.

In a system which is powered by more batteries one can freely change the workloads

of the separate batteries by using battery scheduling.

We have taken two approaches to find the optimal battery schedule in a system

powered by two batteries. In the first, the kinetic battery model is translated to

a priced timed automata model. The optimal schedules are obtained through

model checking techniques. In this approach, the moments at which a scheduling

decision is made need to be predefined. Due to the computational complexity, the
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optimal schedules can only be obtained for a small number of scheduling points,

and therefore only for small batteries. Still, the results indicate that battery

scheduling (potentially) leads to big lifetime improvements.

In the second, analytic approach no limitations to the scheduling moments are

given, i.e., the battery scheduler may switch between the batteries at any point

in time. The question now is to determine the best moments to switch between

the batteries. The analysis shows that the scheduling scheme does not impact

the system lifetime as long as the scheduler can switch at a high rate between

the batteries. The optimal lifetime is actually obtained when the batteries are

discharged in parallel. This result implies that the rate-capacity effect is more

important than the recovery effect, because with parallel discharge neither battery

will have any additional idle time during the discharge. Although parallel usage of

the batteries may not be possible for all types of batteries, one should not connect

the batteries in parallel directly, one can approach parallel usage by switching at

a fast rate between the batteries. As stated before, when doing so, the battery

cannot keep up with the fast switching and will act as if it sees the average current,

which is the same as for parallel discharge.

We have applied the battery scheduling to stochastic workloads by means of

simulation. The actual lifetime gain depends on the type of workload. However,

one can predict the average maximum lifetime gain by computing the maximum

possible gain for a continuous current at the level of the average discharge current

of the random load.

Further work

The results presented in this thesis are based on the kinetic battery model. Al-

though this model has been validated with the highly detailed Dualfoil model

in Chapter 5, experimental validation of the results is an important issue. In

Appendix A results of a first investigation of the practical efficiency of battery

scheduling are given. The results so far are inconclusive, no clear gain in sys-

tem lifetime has been observed. The high variance in battery capacity that is

introduced in the experiments makes more measurements necessary.

One of the possible application areas of the battery scheduling is battery-aware

routing in wireless sensor networks, as presented in Section 5.1. Although the re-

sults in Chapter 6 indicate that high frequency switching leads to an optimal

system lifetime, this is not a good option in wireless sensor networks. Fast switch-

ing between different routes in the network will lead to high overhead and extra

loss of battery capacity. In this case slow switching is better. This still leads to

longer system lifetimes. In this case the recovery effect will play a more important

role. Due to the slow switching the batteries may be depleted further and timely

recovery is essential. Here, further work is necessary, where the cost of switching
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between the batteries is taken into account as well.

Also, it would be interesting to extend the battery model to allow for recharging

of the batteries. This extension can help in answering questions like: “At what

frequency, and how long does one need to recharge in order for the battery never to

be empty?”, or reversely “What size should the battery be if the recharge periods

are given?”. Especially the latter question is interesting for sensor nodes that are

recharged using solar cells. These batteries can recharge during the day, but need

to have enough capacity to survive during the night.
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Appendix A

A first investigation of the

practical efficiency of

battery scheduling

Next to the analytical studies and simulations presented in this thesis, some explo-

rative experiments were performed to investigate whether the theoretical gain also

is practically achievable. These experiments were performed by Damien Miliche

at Thales Nederland B.V., Huizen. This appendix is based on [49]:

• D. Miliche, M. de Graaf, G. Hoekstra, M. Jongerden, and B. Haverkort. A

first experimental investigation of the practical efficiency of battery schedul-

ing. In Workshop Proceedings of the 23th International Conference on Ar-

chitecture of Computing Systems (ARCS ’10), pages 241–246, 2010.

A.1 Experimental setup

The most important contribution of battery scheduling is supposed to be the

extension of the lifetime, which is related to the capacity (in Ah), or the amount

of charge, that the battery can deliver before getting empty. So, in order to

measure the effect of battery scheduling it is necessary to measure the provided

capacity. To do so, different devices are available, including the Amp-hour meter,

the Watt-hour meter, or the Coulomb counter. For practical reasons, however,

an indirect way has been chosen: the capacity is computed indirectly from the

measurement of the current signal. Actually, the capacity is nothing else than the

integration over time of the current.

Figure A.1 shows a schematic picture of the used setup. The actual setup is

illustrated in Figure A.2. The setup consists of:
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Figure A.1 Schematic overview of the measurement setup [49].

• an electronic load (model HP6060B)

• two multimeters (model HP34401A)

• a battery, one of the types described in Section A.2

• a desktop computer

The electronic load is used to create the load for discharging the battery in a

well-controlled manner. During the discharge, both the discharge current and the

output voltage of the battery are monitored with the two multimeters, one used

as ampere meter and the other as voltmeter. The voltmeter is used to ensure that

the battery voltage does not drop too low, which could damage the battery. The

battery is considered empty when its cut-off voltage is reached.

The multimeters and the electronic load are connected to the computer via a

GP-IB bus. This allows us to obtain and log the measured values, and also to

automatically configure the devices. A simple C program is used to monitor and

log the discharge process, looping until the battery is discharged, i.e., when the

cut-off voltage of the battery is reached.

A.2 The batteries

In the experiments two types of batteries have been used. The first type is based

on the Li-ion technology. The batteries have a nominal capacity of 7 Ah, and a

nominal voltage of 14.4 V. The battery is a so-called smart battery, i.e., some

electronics have been added to the battery pack to control the charging and dis-

charging, so-called cell balancing, and to provide an I2C-like interface (SMBus)

for the system. With Li-ion batteries, attention has normally to be paid to the
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A.2 The batteries

Figure A.2 Measurement setup [49].

charge and the discharge process in order not to damage the battery. For the used

battery this is managed by the embedded electronics and an appropriate charger.

The embedded electronics are used to monitor the state-of-charge of the bat-

tery. When the battery is detected as empty, i.e., when the cut-off voltage of 12

V is reached, the battery cells are actually disconnected from the battery pack

output. For the charging process, a smart charger is used, which communicates

with the electronics of the battery pack, and stops charging when the cells are

determined as full.

These batteries are used in the Thales personal communication system, called

CIM (for Communication and Information Module) [63]. This system aims to

centralize the data for a radio, a GPS, a display, and other devices constituting

the useful equipment for any kind of urgent or dangerous interventions done by for

example police, fire fighters or army. The system is powered by two independent

batteries, which so far are discharged in a sequential manner,i.e., the second is

only used when the first is completely discharged. The motivation for using the

batteries sequentially is mainly operational. It should be avoided that the personal

communication system runs out of power with no backup battery available.

The second type of battery used for the experiments is a NiCd battery as is

commonly used in remote control cars. These batteries are characterized by a

nominal capacity of 1.6 Ah under a nominal voltage of 7.2 V.

The NiCd batteries do not have any kind of smart management, neither within

the battery pack, nor within the charger. All the management has to be done
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manually. Moreover this kind of battery can suffer from a memory effect, if the

charge-discharge cycles are not done completely. Indeed, due to crystallization

of the electrodes, this effect causes the battery to deliver only the capacity used

during the preceding charge/discharge cycles.

We define the battery empty when its voltage, measured by the voltmeter,

drops below the cut-off voltage of 6 V. The full-charged state is considered to be

reached when the battery is heating (due to chemical reaction at the end of the

charging process), and when the voltage stabilizes around 8.8 V.

A.3 Discharge measurements

Three measurement series have been performed with both battery types.

The first series of measurements consists of discharging the battery with a

constant current. During the experiment, the voltage and the current are sampled

with fixed intervals. In the end, we obtain the discharge time and can compute

the provided capacity by numerical integration of the discharge current over the

time. This first series aims to give us a reference point of the delivered charge

without scheduling, to which we can compare the results of the other two series.

In the second and third series of measurements, we mimic the scheduling using

a single battery. The purpose is to observe the impact of scheduling, and not to

implement a real scheduling system. The real implementation can indeed be rela-

tively complex, requiring a circuit to manage the switching between the batteries,

and an algorithm to determine the switching sequence. Instead, we just look at the

behavior of one battery in a two-battery system, where a battery is used half of the

time. The scheduling algorithm we use is a fast switching round robin schedule.

Two different frequencies are used: 0.1 Hz and 1 Hz, thus switching every 5 s and

0.5 s. According to the theoretical results, one expects a significant extension of

lifetime compared to sequential scheduling for both frequencies. The alternating

battery selection is simulated by turning on and off the electronic load. In the

same way as with the first series, the provided capacity and the discharge time are

computed.

A.4 Results

For both the Li-ion and the NiCd battery type, two batteries have been used. The

described measurement series have been performed once with every battery. In the

first series of measurements for the Li-ion batteries, the battery was discharged at a

constant current of 250 mA, 500 mA, 750 mA, 1 A, 1.5 A, 2 A and 2.5 A. While the

experiments are time-consuming, the other measurement series are performed with

a subset of these currents. The discharge currents used in the other measurement

series, both for the Li-ion and NiCd batteries, where 500 mA, 1 A or 2 A.
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Figure A.3 Evolution of the battery voltage during the discharge.

Figure A.3 shows the measured battery voltage of a Li-ion battery as a function

of the time for a continuous and an intermittent load with 500 mA discharge

current. The intermittent load has a frequency of 0.1 Hz. In the figure one can see

that, in this example, the intermittent discharge leads to a lifetime that is more

than twice as long as the lifetime for the continuous discharge.

The figure also shows how the battery voltage slowly drops during the discharge

until the cut-off voltage of 12 V is reached. At this point the embedded electronics

disconnect the cells from the output, which makes the voltage drop to zero. The

voltage of the battery decreases at a lower rate when the battery is discharged

with an intermittent load. When we zoom into the curve, we can actually see that

there is a small increase of the voltage during the idle periods. This is shown in

Figure A.4. Here we can see the recovery effect, i.e., during the short idle periods

the output voltage recovers slightly.

From the first series of measurements also the rate capacity effect can be shown.

Figure A.5 and Figure A.6 show the delivered charge as a function of the discharge

current for the NiCd and Li-ion batteries, respectively. For both of the NiCd bat-

teries a clear drop in delivered charge is observed when the discharge current is

increased (cf. Figure A.5). The delivered capacity at a current of 2 A is approxi-

mately 18% lower than the delivered charge at 0.5 A.

The rate capacity effect is less visible for the Li-ion batteries (cf. Figure A.6).

For one of the batteries, Li-ion 2, the delivered charge drops with approximately
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Figure A.4 Top: zoom in of the evolution of the battery voltage for the inter-

mittent discharge. Bottom: the discharge current as a function of the time.
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Figure A.5 Rate capacity effect for the NiCd batteries, as in [49].

10% when the discharge current is increased from 1 A to 2.5 A. However, for

the other Li-ion battery the delivered charge is lower only for the 2 A discharge

current. For all the other discharge currents the delivered charge is approximately

7 Ah.

A first explanation of the difference between the results of the two battery types

can be the difference in nominal capacity between the two battery types. The

increase of the discharge current will have a larger impact on the NiCd batteries

which have a lower capacity. Another explanation can be found in the fact that the

Li-ion batteries are enriched with some electronics. The cell-balancing performed

by the electronics controls the discharge of the separate battery cells, and may

result in less loss of capacity when the discharge current is increased.

Table A.1 shows the relative lifetime extension for both types of battery when

using scheduling. Both scheduling frequencies of 0.1 Hz and 1 Hz have been used

for the NiCd battery and for the Li-Ion battery. One can see, for the NiCd batter-

ies, that the gain varies between -8.2% and +7.3% with the 1 Hz scheduling, and

between -5.3% and +5.3% with the 0.1 Hz scheduling. For the Li-Ion batteries, the

gain varies between -13.9% and +9% and between -15.9% and +21% respectively.

The results are not as expected. In the given set of experiments some anomalies

were observed. Scheduling does not always improve the lifetime, and there is no

clear relation with the discharge current. One explanation might be found in the

fact that it is difficult to do the measurements under exactly the same conditions.
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continuous discharge intermittent discharge 1 Hz intermittent discharge 0.1 Hz

battery discharge delivered delivered delivered

type current (A) charge (mAh) charge (mAh) ∆% charge (mAh) ∆%

NiCd 1

0.5 1440 1470 2.1 1457 1.2

1 1218 1261 3.5 1283 5.3

2 1193 1095 -8.2 1164 -2.4

NiCd 2

0.5 1352 1451 7.3 1420 5.0

1 1272 1222 -3.9 1205 -5.3

2 1098 1114 1.5 1086 -1.1

Li-ion 1

0.5 6957 7080 1.8 7184 3.3

1 6874 6418 -6.6 6649 -3.3

2 6005 6546 9.0 7265 21.0

Li-ion 2

0.5 6898 5942 -13.9 6547 -5.1

1 6922 6003 -13.3 5824 -15.9

2 6335 6868 8.4 5927 -6.4

Table A.1 Delivered charge measured for two NiCd batteries and two Li-ion batteries with continuous and intermittent discharge

[49].
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Figure A.6 Rate capacity effect for the Li-ion batteries, as in [49].

The state of the battery before each discharge is hardly ever precisely the same, as

the battery ages and thus its parameters vary. Nevertheless, more measurements

should be performed in order to obtain better statistics in the results, canceling

the measurement errors and the parameter variability.

A.5 Discussion

Although the simulations show that, also with real sized batteries, battery schedul-

ing does lead to a considerable gain in lifetime, this is not seen so clearly in the

experiments. For some of the experiments the lifetime with scheduling is longer

than without. However, no structural gain can be observed. The most important

reason for these results is, most probably, the uncertainty in the state-of-charge of

the full and empty batteries. One can not tell whether the battery is recharged to

the same level before every experiment, and discharged to the same depth. To re-

move this uncertainty many more experiments have to be done. However, this will

also bring an extra uncertainty into the experiments, since a battery may slowly

degrade after many discharge-charge cycles. Also, variation in capacity between

different batteries may be large.
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Samenvatting

Tegenwoordig bezit vrijwel iedereen meerdere apparaten die op batterijen werken,

zoals een mobiele telefoon, PDA of laptop. Volgens het CBS is het aantal mobiele

telefoons in Nederland tussen 2004 en 2008 gegroeid van 16 miljoen naar 19.7

miljoen, en het percentage huishoudens dat een laptop bezit is gegroeid van 27%

naar 62%.

Een belangrijk aspect met betrekking tot de gebruikersvriendelijkheid van al

deze apparaten is dat de hoeveelheid energie in de batterijen van de apparaten

beperkt is. Hoe lang je een apparaat kan gebruiken wordt bepaald door de lev-

ensduur van de batterij. In dit proefschrift is de levensduur van de batterij de

tijd die het kost tot een volle batterij niet voldoende energie meer kan leveren om

het apparaat te laten werken; hierbij wordt de batterij tussendoor niet opgeladen.

Voor een ideale batterij hangt de levensduur alleen af van de capaciteit van de

batterij en het niveau van de ontlaadstroom waarmee de batterij belast wordt.

De levensduur zal langer zijn wanneer de capaciteit groter is, of de ontlaadstroom

lager is. Een ideale batterij zal onafhankelijk van de ontlaadstroom altijd al zijn

energie kunnen leveren aan het apparaat. In werkelijkheid is dit echter niet het

geval. Wanneer een echte batterij met een constante stroom ontladen wordt, zal

deze bij een hoge stroom minder energie kunnen leveren tot hij leeg is dan bij een

lage ontlaadstroom. Dit effect wordt het rate-capacity effect genoemd. Dit effect

kan (deels) ongedaan gemaakt worden door na een periode van hoge belasting

de batterij een tijdje niet te belasten. Tijdens zo’n rustperiode kan de batterij

herstellen en kan de energie die verloren leek gegaan toch nog door de batterij

geleverd worden. Dit effect wordt het recovery effect genoemd. Deze twee effecten

zorgen ervoor dat de levensduur van de batterij niet alleen door het gemiddelde

belastingsniveau wordt bepaald, maar ook door het belastingsprofiel. De vraag is

nu, hoe het belastingsprofiel moet worden aangepast zodat de levensduur van de

batterij, en dus het gebruiksgemak van het apparaat, het langst is?

Voor het beantwoorden van deze vraag maken we gebruik van wiskundige mod-

ellen. We hebben batterijmodellen nodig die de belangrijkste processen in de bat-

terij beschrijven en werklastmodellen die het belastingsprofiel van een apparaat

beschrijven. In de literatuur zijn veel verschillende batterijmodellen beschikbaar.
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Samenvatting

In Hoofdstuk 2 vergelijken we de belangrijkste batterijmodellen met elkaar, en

onderzoeken we welke modellen geschikt zijn om te combineren met een werk-

lastmodel. Een geschikt model moet de twee belangrijke effecten die hierboven

beschreven zijn goed beschrijven, en tegelijkertijd niet te groot zijn, zodat het

gecombineerde batterij-werklast model niet te complex wordt en de berekeningen

die hiermee gedaan moeten worden niet te lang duren. De batterijmodellen die aan

deze eisen voldoen zijn de zogenaamde analytische modellen, het kinetic battery

model en het diffusion model.

In Hoofdstuk 3 vergelijken we deze twee modellen in meer detail met elkaar.

Hieruit blijkt dat deze twee modellen sterk aan elkaar gerelateerd zijn. Het kinetic

battery model is een eerste orde benadering van het diffusion model. Wanneer we

de parameters van het kinetic battery model goed kiezen, levert deze eerst orde

benadering dezelfde resultaten bij de berekeningen van de batterijlevensduur op.

We hebben daarom het kinetic battery model gekozen om de verdere berekeningen

in dit proefschrift mee te doen.

In Hoofdstuk 4 combineren we het kinetic battery model met een werklast-

model. Voor veel apparaten is het lastig om de exacte werklast te voorspellen

omdat deze wordt bepaald door toevallige invloeden van buitenaf, zoals het gedrag

van de gebruiker. Om de random patronen in de werklast te modelleren maken

we gebruik van een Markov model. De combinatie van het batterijmodel met het

werklast model is een zogenaamd inhomogeen Markov reward model. Voor dit

model presenteren we nieuwe algoritmes voor het berekenen van de verdeling en

de verwachtingswaarde van de levensduur van de batterij en de hoeveelheid lading

die de batterij levert voor een gegeven werklast. Hiermee kunnen we de invloed

van werklast op de levensduur van de batterij bepalen.

In een apparaat dat door slecht één batterij van energie wordt voorzien is het

vaak lastig om de werklast van de batterij te veranderen. Een gebruiker zal, bij-

voorbeeld, niet willen wachten met het bellen met zijn mobiele telefoon omdat dit

in de toekomst misschien beter is voor de batterij. Echter, in een apparaat waar

meerdere batterijen gebruikt kunnen worden, kan men door te schakelen tussen

de batterijen de werklast over de batterijen verdelen, en zo de werklast van iedere

batterij op zich bëınvloeden. In Hoofdstuk 5 en Hoofdstuk 6 bepalen we op

twee manieren wat de beste strategie is om de werklast over meerdere batterijen

te verdelen.

In Hoofdstuk 5 beschrijven we het kinetic battery model met priced timed au-

tomata. In dit nieuwe model kan er alleen geschakeld worden tussen de batterijen

op het moment dat er een verandering plaats vindt in de werklast. Met behulp van

model checking technieken wordt voor een gegeven belasting het optimale schema

voor het verdelen van de werklast gevonden. De berekeningen laten zien dat door

het verdelen van de werklast over de batterijen de totale levensduur van de batteri-

jen langer wordt. Het probleem van dit model is echter, dat de berekeningen alleen

gedaan kunnen worden voor batterijen met een kleine capaciteit, voor grotere bat-
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terijen worden de berekeningen te zwaar.

De oplossingstechniek die in Hoofdstuk 6 wordt gebruikt heeft dit probleem

niet. In dit hoofdstuk laten we de restricties voor wanneer er geschakeld mag wor-

den tussen de batterijen vallen. Uit de analyse van de vergelijkingen van het ki-

netic battery model voor het totale systeem kan nu een bovengrens worden bepaald

voor de levensduur van de batterijen. Het blijkt dat deze bovengrens ook dicht

benaderd kan worden als men toe laat dat er snel geschakeld wordt tussen de

batterijen. De winst in levensduur die men behaalt wanneer het schakelen tussen

batterijen wordt toegepast hangt voornamelijk af van de verhouding tussen de

capaciteit van de batterij en de gemiddelde belasting.
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